February 21, 2025

Mr. Wardell Wilcox Bayer Becker 6900 Tylersville Road Mason, Ohio 45040

Dear Mr. Wilcox:

The Department of Transportation and Engineering (DOTE) has completed the review of the Traffic Impact Study for the Hyde Park Square Development (TIS).

A TIS was submitted to DOTE on February 5, 2025 that recommended changes to improve traffic operation on Edwards Rd between Observatory Ave and Erie Ave. The recommended changes did have a significant impact on on-street parking along this segment of Edwards Rd. The study recommended changes to improve traffic conditions on Edwards Rd with today's conditions, without consideration for the development as well with the proposed development. DOTE agreed with and approved the methodology and assumptions in the report but requested additional information before making an opinion on the recommendations of the study.

Specifically, DOTE requested travel time in both directions of Edwards Rd and queue lengths on Edwards Rd at both Erie Ave and Observatory Ave intersections, with four scenarios:

- Scenario 1 Existing conditions
- Scenario 2 Existing traffic with recommended 2024 improvements (No development considered)
- Scenario 3 Existing operations with development generated traffic added
- Scenario 4 Proposed Recommendations with development generated traffic

Scenario 1 shows better travel times and queues better or the same as Scenario 2. DOTE does not recommend or approve the implementation of Scenario 2.

When comparing Scenario 1 v Scenario 3 v Scenario 4, there is not a significant difference in the travel times or queue lengths between the Scenario's. This can be attributed to signal timing changes to optimize each Scenario.

DOTE pulled existing crash data for this section of Edwards Rd for the 4-year period of 2021-2024. There were 22 crashes during this period, which is slightly higher than would be expected. However, only one of the crashes resulted in serious injury, the remainder were minor, property damage only type crashes. Scenario 4 could reduce crashes by creating turn lanes, thus reducing rear-end collisions.

After review of the TIS, DOTE concludes the proposed development will have minimal impact to the existing travel conditions on Edwards Rd and Scenario 3 would sufficiently support the development. However, there are potential benefits to implementing Scenario 4, mainly a reduction in crashes but at the expense of on-street parking. The parking loss could be offset

by the proposed garage. DOTE would not be opposed to implementing the recommended Scenario 4. If the developer would like to pursue Scenario 4, they can work with the Hyde Park Community Council and the directly affected properties and businesses as well as DOTE and City of Cincinnati Parking Services.

The TIS states the drive access to the site from Edwards Rd will be moved to the southern property line of the development. This change must be incorporated into the plan.

The TIS discusses existing traffic concerns related to the dismissal process of Hyde Park School, which occurs between roughly 1:45p and 2:15p each school day. DOTE is working separately with Cincinnati Public Schools on ways to potentially alleviate some of the issues associated with afternoon dismissal.

It should be noted that any comments, requirements or other issues associated with the development that occur during the site review or permitting phase of the project will supersede the comments associated with the TIS review.

DOTE staff are prepared to meet with you to discuss this review and provide further insight into comments and the concerns. Should you have any questions or want to schedule a follow-up meeting, please contact Bryan Williams at <u>bryan.williams@cincinnati-oh.gov</u> or 352-4506. We appreciate your cooperation in this matter.

Sincerely,

Bryan Williams, P.E. Division Manager

TRAFFIC IMPACT STUDY FOR HYDE PARK SQUARE DEVELOPMENT

HYDE PARK COMMUNITY CINCINNATI, OHIO

FEBRUARY 2025

PREPARED FOR:

PLK Communities 5905 East Galbraith Road, Suite 4100 Cincinnati, Ohio 45236

PREPARED BY:

BAYER BECKER 6900 TYLERSVILLE ROAD MASON, OHIO 45040 PHONE: (513) 336-6600 FAX: (513) 336-9365

TABLE OF CONTENTS

EXECUTIVE SUMMARY	1
INTRODUCTION	5
PROPOSED SITE DEVELOPMENT	8
AREA CONDITIONS Study Area Study Area Land Use Site Accessibility	10
PROJECTED TRAFFIC Site Traffic Trip Distribution External Site Trips Pass-By Trips Final Site Trips Build Traffic Projections	13
TRAFFIC ANALYSIS Site Access Traffic Lane Warrant Analysis Capacity and Level of Service Turn Lane Storage Length Calculations Traffic Safety Site Access and Parking Needs	21
IMPROVEMENT ANALYSIS Status of Improvements Previously Recommended Improvements to Accommodate Base Traffic Improvements to Accommodate Site Traffic	31
FINDINGS Site Accessibility Traffic Impacts Need for Improvements Compliance with Applicable Codes	37
RECOMMENDATIONS Site Access Roadway Improvements	40

LIST OF TABLES

TABLE 1 – TRIP GENERATION	14
TABLE 2 – EXISTING REGIONAL TRAFFIC AND PERCENTAGE DISTRIBUTION	15
TABLE 3 – LEVEL OF SERVICE CRITERIA FOR SIGNALIZED AND UNSIGNALIZED INTERSECTIONS	25
TABLE 4 – LEVEL OF SERVICE RESULTS	26 - 27
TABLE 5 – BACK OF QUEUE LANE LENGTH RESULTS	28
TABLE 6 – TRAVEL TIMES AND BACK OF QUEUE LANE LENGTH RESULTS	34 - 35

LIST OF FIGURES

FIGURE 1 – VICINITY MAP	5
FIGURE 2 – CONCEPTUAL SITE DEVELOPMENT PLAN	9
FIGURE 3 – 2024 EXISTING TRAFFIC VOLUMES AND PERCENTAGES	12
FIGURE 4 – EXTERNAL TRIPS	16
FIGURE 5 – PASS-BY TRIPS	17
FIGURE 6 – FINAL SITE TRIPS	18
FIGURE 7 – 2027 BUILD TRAFFIC PROJECTIONS	20
FIGURE 8 – EXISTING GEOMETRY AND ALTERNATIVE GEOMETRIC LAYOUT	24
FIGURE 9 – RECOMMENDED ROADWAY IMPROVEMENTS	33

APPENDICES

- APPENDIX A EXISTING TRAFFIC COUNTS
- APPENDIX B ITE TRIP GENERATION EXCERPTS, NCHRP INTERNAL CAPTURE CALCULATIONS & EXTERNAL TRIP WORKSHEETS
- APPENDIX C HCS INTERSECTION LOS CAPACITY ANALYSIS CALCULATIONS & BACK OF QUEUE LANE LENGTH RESULTS
- APPENDIX D SIMTRAFFIC TRAVEL TIMES & BACK OF QUEUE LANE LENGTH RESULTS

EXECUTIVE SUMMARY

The proposed Hyde Park Square development is located on the east side of Edwards Road (SR 561), south side of Erie Avenue, and west side of Michigan Avenue in the Hyde Park Community, City of Cincinnati, Ohio. The proposed Hyde Park Square development will include a mix of commercial/retail and residential land uses and will consist of the following land uses and densities:

Hyde Park Square Development

Land Use	Density
Multifamily Housing (Apartments and Townhomes)	182 Dwelling Units (DU)
Hotel	90 Rooms (RM)
Retail Stores	10,600 Square Feet (SF)
Fast Casual Restaurant	5,300 Square Feet (SF)
Fine Dining Restaurant	3,000 Square Feet (SF)
Brewery Tap Room	6,000 Square Feet (SF)
Total Development	24,900 SF/182 DU/90 RM

The roadways that will provide access to the proposed site development are Edwards Road (SR 561), Observatory Avenue, Erie Avenue, and Michigan Avenue. Direct access to the proposed Hyde Park Square development will utilize the following locations:

- Edwards Road (SR 561) and Site Access 1, approximately 230 feet south of Erie Avenue (stop bar to centerline), near the south property line.
- Michigan Avenue and Site Access 2, approximately 150 feet south of Erie Avenue (stop bar to centerline).

Bayer Becker corresponded with representatives of the Cincinnati Department of Transportation and Engineering (DOTE) to establish the parameters of the Study. As such, the following key existing and proposed intersections define the study area of this report:

- Edwards Road (SR 561) and Erie Avenue Existing.
- Edwards Road (SR 561) and Observatory Avenue Existing.
- Michigan Avenue and Erie Avenue Existing.
- Edwards Road (SR 561) and Site Access 1 Proposed.
- Michigan Avenue and Site Access 2 Proposed.

The traffic control that currently operates at the key existing intersections are as follows:

- Edwards Road (SR 561) and Erie Avenue Signalized.
- Edwards Road (SR 561) and Observatory Avenue Signalized.
- Erie Avenue and Michigan Avenue Signalized.

The site is surrounded by residential, commercial, recreational, civic and educational land uses. There are no other known significant developments or improvements planned within the immediate study area.

Based on the current traffic operation issues discussed in this report, the roadway improvements recommended to accommodate the **2024 Existing Traffic** (excluding site traffic) are as follows:

Edwards Road Corridor

- 1. Restripe the southbound pavement on Edwards Road (SR 561), between Erie Avenue and Observatory Avenue, with a lane line to allow the curb lane to function as a lane of travel during the restricted parking periods.
- Restrict on-street parking on the west side of Edwards Road (SR 561) during the 12:00 PM – 6:00 PM peak hour period, between Erie Avenue and the Hyde Park Elementary School driveway.
- Install "No Parking or Stopping 12 PM 6 PM Mon thru Fri Except During After School Dismissal" pole mounted signs on the west side of Edwards Road (SR 561), within the restricted area.
- Police enforcement should be required to maintain safe traffic operations on Edwards Road (SR 561) at the Hyde Park Elementary School driveway, during the standard time allotment for the schools PM period.
- 5. An adult crossing guard should be considered at the Edwards Road (SR 561) and Erie Avenue intersection during the AM and PM school peak periods if student safety concerns arise.

Based on the analysis contained in this report, the roadway improvements recommended to accommodate the **2027** *Build Traffic Projections* (including site traffic) are as follows:

Edwards Road (SR 561) and Erie Avenue Intersection

- 1. Restripe Edwards Road (SR 561) and Erie Avenue intersection to provide the following:
 - One (1) northbound left turn lane a total of 100 feet in length, including 50 feet of diverging taper.

- One (1) northbound shared through and right turn lane.
- Adjust striping on the north side of the intersection for proper geometric alignment.
- Modify traffic signal to provide appropriate timing and phasing.

Edwards Road (SR 561) and Site Access 1 Intersection

- Construct a new full operational site access driveway on the east side of Edwards Road (SR 561), approximately 230 feet south of Erie Avenue (stop bar to centerline), for access to the proposed Hyde Park Square development.
- 2. Provide one (1) eastbound lane for entering traffic.
- 3. Provide one (1) westbound lane for exiting traffic.
- 4. Install a "Do Not Block Driveway" pole mounted sign on Edwards Road (SR 561) at the site driveway.

Michigan Avenue and Site Access 2 Intersection

- 1. Construct a new full operational site driveway on the west side of Michigan Avenue, approximately 150 feet south of Erie Avenue (stop bar to centerline), for access to the proposed Hyde Park Square development.
- 2. Provide one (1) westbound lane for entering traffic.
- 3. Provide one (1) eastbound lane for exiting traffic.

<u>General</u>

- 1. Restripe Edwards Road (SR 561), along the site frontage, to provide:
 - One (1) lane of travel in the northbound direction.
 - Two (2) lanes of travel in the southbound direction.
 - A center two-way left turn lane (TWLTL) approximately 330 feet (stop bar to US Bank entering driveway) to provide left turn storage for the driveways on both sides of Edwards Road (SR 561)
- 2. Remove all on-street parking on east side of Edwards Road (SR 561), along site frontage.
- Install "No Stopping or Parking Anytime" pole mounted signs on the east side of Edwards Road (SR 561), within the restricted area.
- 4. Modify traffic signal timing and phasing at the Edwards Road (SR 561) and Erie Avenue, and Michigan Avenue and Erie Avenue intersections, as necessary.

Based upon engineering judgment and the analysis contained in this report, the proposed Hyde Park Square development upon construction of the recommended improvements will not significantly impact operations on the adjacent roadway network.

INTRODUCTION

The purpose of this study is to determine the traffic impacts of the proposed Hyde Park Square development, in the Hyde Park Community, Cincinnati, Ohio, and to satisfy the Cincinnati Department of Transportation and Engineering (DOTE) requirements for traffic impact studies.

This study describes the existing roadway network, identifies peak traffic conditions, forecasts and distributes future traffic volumes, and determines the impact of the proposed development on the adjacent road network. Conclusions related to the impact of the increased traffic on the roadway system are identified and recommendations for mitigating any possible traffic impacts are provided.

The proposed Hyde Park Square development is located on the east side of Edwards Road (SR 561), south side of Erie Avenue, and west side of Michigan Avenue in the Hyde Park Community. A vicinity map is provided in Figure 1 below.

Figure 1 Vicinity Map

Bayer Becker corresponded with DOTE to establish the scope of the study. As such, the following key existing and proposed intersections define the study area of this report:

- Edwards Road (SR 561) and Erie Avenue Existing.
- Edwards Road (SR 561) and Observatory Avenue Existing.
- Michigan Avenue and Erie Avenue Existing.
- Edwards Road (SR 561) and Site Access 1 Proposed.
- Michigan Avenue and Site Access 2 Proposed.

The full build out of the proposed Hyde Park Square development is anticipated by the year 2027. Therefore, the analysis year of the study is **2027** *Build Traffic Projections*. At full build out, the proposed Hyde Park Square development will consist of the following land uses and densities:

Hyde Park Square Development

Land Use	Density
Multifamily Housing (Apartments and Townhomes)	182 Dwelling Units (DU)
Hotel	90 Rooms (RM)
Retail Stores	10,600 Square Feet (SF)
Fast Casual Restaurant	5,300 Square Feet (SF)
Fine Dining Restaurant	3,000 Square Feet (SF)
Brewery Tap Room	6,000 Square Feet (SF)
Total Development	24,900 SF/182 DU/90 RM

The technical material and data contained in this document was prepared by Bayer Becker under the supervision and direction of a Professional Engineer licensed to practice in the State of Ohio, using the following resources in the development of the analysis:

- 1. Site reconnaissance, field counts and observations by Bayer Becker.
- 2. Communications with representatives of the Cincinnati Department of Transportation and Engineers (DOTE).
- 3. Communications with representatives of the PLK Communities (PLK).
- 4. Concept Site Plan for the proposed Hyde Park Square development provided by PLK.

- 5. Peak hour turning movement traffic counts, performed by Bayer Becker, on Wednesday, November 6, 2024, and Tuesday, December 3, 2024, from 7:00 AM to 9:00 AM and from 4:00 PM to 6:00 PM peak hours at the following intersections:
 - a. Edwards Road (SR 561) and Erie Avenue.
 - b. Edwards Road (SR 561) and Observatory Avenue.
 - c. Erie Avenue and Michigan Avenue.
- 6. Institute of Transportation Engineer's (ITE) *Trip Generation Manual 11th, Edition.*
- 7. Highway Capacity Manual (HCM), 6th Edition.
- 8. Highway Capacity Software 2024 (HCS2024, Version 8.3).
- 9. SYNCHRO plus SimTraffic 12, Version 12.2, build 3, revision 12 (12.2.3.12).
- 10. The 2013 Official Thoroughfare System, for the City of Cincinnati.
- 11. Reference to the Title XIV Zoning Code of the City of Cincinnati, Ordained 2004.

The primary objective of this traffic impact study is to determine the traffic impacts of the proposed development, to determine what off-site improvements are required to mitigate the developments' impact, and to satisfy DOTE requirements for traffic impact studies.

The **2024** *Existing Traffic* and **2027** *Build Traffic Projections* are the years analyzed as part of the study.

PROPOSED SITE DEVELOPMENT

The proposed Hyde Park Square development is located on the east side of Edwards Road (SR 561), south side of Erie Avenue, and west side of Michigan Avenue in the Hyde Park Community, City of Cincinnati, Ohio.

According to the City of Cincinnati, Ohio *Zoning Map*, the multiple properties are currently zoned Commercial Neighborhood - Pedestrian - Business (CN-P-B) and Office Limited - Business (OL-B). The properties have been consolidated under the Planned Development (PD) zone. The proposed zone change would allow for a mixed-use development consisting of residential (residential apartments and townhouses), retail (including restaurants and entertainment), and hotel land uses.

At full build out, the proposed Hyde Park Square development will consist of the following land uses and densities:

Hyde Park Square Development

Land Use	Density
Multifamily Housing (Apartments and Townhomes)	182 Dwelling Units (DU)
Hotel	90 Rooms (RM)
Retail Stores	10,600 Square Feet (SF)
Fast Casual Restaurant	5,300 Square Feet (SF)
Fine Dining Restaurant	3,000 Square Feet (SF)
Brewery Tap Room	6,000 Square Feet (SF)
Total Development	24,900 SF/182 DU/90 RM

Direct access to the proposed Hyde Park Square development will utilize the following locations:

- Edwards Road (SR 561) and Site Access 1, Full Movement.
- Michigan Avenue and Site Access 2, Full Movement.

The Concept Plan for the proposed Hyde Park Square development is provided in Figure 2.

AREA CONDITIONS

Study Area

The proposed site development is located on Edwards Road (SR 561), Erie Avenue, and Michigan Avenue. The following key existing and proposed intersections define the study area of this report:

- Edwards Road (SR 561) and Erie Avenue Existing.
- Edwards Road (SR 561) and Observatory Avenue Existing.
- Michigan Avenue and Erie Avenue Existing.
- Edwards Road (SR 561) and Site Access 1 Proposed.
- Michigan Avenue and Site Access 2 Proposed.

Within the study area, according to the 2013 Official Thoroughfare System Report for the City of Cincinnati, **Edwards Road (SR 561)** is a north-south, basic four (4) lane Principal Arterial street; operating on the west border of the proposed Hyde Park Square development, with a posted speed limit of 35 mph. One (1) lane of travel and one (1) lane of on-street parking are provided in each of the northbound and southbound directions, with turn lanes provided at critical intersections with Erie Avenue and Observatory Avenue.

Erie Avenue is an east-west, four (4) lane Minor Arterial street; to the north of the Hyde Park Square development, with a posted speed limit of 25 mph along the site frontage. The historic Hyde Park Square boulevard and neighborhood shopping district is located on Erie Avenue, also along the site frontage. Two (2) lanes of travel and angled on-street parking are provided in each of the eastbound and westbound directions, with turn lanes provided at the critical Edwards Road (SR 561) intersection.

Michigan Avenue is a north-south, two (2) lane Local street on the east side of the proposed Hyde Park Square development, with a posted speed limit of 25 mph along the site frontage. One (1) lane of travel and one (1) lane of on-street parking are provided in each of the northbound and southbound directions.

Observatory Avenue is an east-west two (2) lane Principal Arterial street, operating to the south of the proposed Hyde Park Square development with a posted speed limit of 30 MPH. One (1) lane of travel and one (1) lane of on-street parking are provided in each of the eastbound and westbound directions, with turn lanes provided at critical intersections with Edwards Road (SR 561).

It should be noted that a restrictive 20 mph school zone sign is installed on Edwards Road (SR 561) and Observatory Avenue, in the vicinity of the Hyde Park Elementary School.

Study Area Land Use

The proposed Hyde Park Square development is generally surrounded by residential, commercial, institutional, recreational and educational land uses.

There are no other known developments or improvements planned within the study area.

Site Accessibility

The roadways that will provide access to the proposed site development are Edwards Road (SR 561), Observatory Avenue, Erie Avenue, and Michigan Avenue. Direct access to the proposed Hyde Park Square development will utilize the following locations:

- Edwards Road (SR 561) and Site Access 1, approximately 230 feet south of Erie Avenue (stop bar to centerline).
- Michigan Avenue and Site Access 2, approximately 150 feet south of Erie Avenue (stop bar to centerline).

To determine the weekday AM and PM peak hour traffic volumes for the key intersections, Bayer Becker performed the peak hour turning movement traffic counts, on Wednesday, November 6, 2024, and Tuesday, December 3, 2024, from 7:00 AM to 9:00 AM and from 4:00 PM to 6:00 PM at the following intersections:

- Edwards Road (SR 561) and Erie Avenue.
- Edwards Road (SR 561) and Observatory Avenue.
- Erie Avenue and Michigan Avenue.

The 1-hour peak for the AM and PM peak hour periods were established as:

- AM Peak Hour 7:30 8:30 AM.
- PM Peak Hour 4:00 and 4:30 5:00 and 5:30 PM.

The 2024 Existing AM and PM peak-hour volumes are presented in Figure 3. The actual 2024 existing traffic volumes are provided in Appendix A.

External Station					
Existing Traffic and Percentage Distribution	A	VI In	AM Out		
To/From North on Edwards Road (SR 561)	409	14%	512	18%	
To/From South on Edwards Road (SR 561)	175	6%	111	4%	
To/From North on Michigan Avenue	58	2%	47	2%	
To/From South on Michigan Avenue	31	1%	47	1%	
To/From East on Erie Avenue	822	28%	435	15%	
To/From West on Erle Avenue	284	10%	552	19%	
To/From East on Observatory Avenue	743	26%	549	19%	
To/From West on Observatory Avenue	381	13%	630	22%	
	2,903	100%	2,883	100%	
	PI	Vi In	РМ	Out	
To/From North on Edwards Road (SR 561)	604	20%	448	14%	

172

86

36

380

671

495 653

3,097

6%

2%

1%

12%

22%

16% 21%

100%

123

47

27

914

282

978

352

3,171

4%

1%

1%

29%

9%

31%

11%

100%

To/From North on Edwards Road (SR 561)
To/From South on Edwards Road (SR 561)
To/From North on Michigan Avenue
To/From South on Michigan Avenue
To/From East on Erie Avenue
To/From West on Erle Avenue
To/From East on Observatory Avenue
To/From West on Observatory Avenue

N.T.S.

Figure 3

Hyde Park Square Development City of Cincinnati, Hamilton County, Ohio

2024 Existing Traffic & Percentage Distributions

xx/xx% - AM Peak Hour (xx)/(xx%) - PM Peak Hour

PROJECTED TRAFFIC

Site Traffic

The Institute of Transportation Engineer's (ITE) *Trip Generation Manual*, *11th Edition*, based on the peak hour of adjacent street traffic, when available, or peak of generator, is the nationally accepted data source used by the traffic engineering industry to estimate the future trips for the land uses of a proposed development. The trips generated by the proposed Hyde Park Square development were calculated using the *Trip Generation Manual*, based on the peak hour of adjacent street traffic.

The proposed Hyde Park Square development, with its mix of commercial, retail, and residential land uses, has the potential for interaction amongst these uses within the site. As defined in the ITE *Trip Generation Handbook*, *3rd Edition*, "a multi-use development is typically a single real estate project that consists of two or more ITE land use classifications between which trips can be made without using the off-site road system."

Therefore, the procedure for estimating multi-use trip generation (internal capture), presented in the Transportation Research Board (TRB) *National Cooperative Highway Research Program (NCHRP) Report 684, "Enhancing Internal Trip Capture Estimation for Mixed-Use Developments*", was used to estimate the internal trips, or the reduction rate that can be applied to the trip generation estimates for individual land uses to account for trips internal to the site. Once the trips internal to the site are established, the trips external to the site that are added to the adjacent road network are developed by subtracting the internal trips from the site generated trips of each land use category.

The trips generated by the proposed Hyde Park Square development, during the weekday AM and PM peak hour (of adjacent street traffic), are shown in Table 1.

The trips generated by each land use during the weekday AM and PM peak hour (of adjacent street traffic) are presented in Table 1, on page 14.

	Table 1
Trip	Generation*

	ITE			AM	Peak H	our	PM Peak Hour			
Hyde Park Square Development	TTE Code*	Size	Unit	Enter	Exit	Total	Enter	Exit	Total	
Multi-Family Housing (Mid Rise) 4-10 Fls	221	182	DU's	16	52	68	43	28	71	
Internal Capture				0	-3	-3	-17	-11	-28	
External Trips**				16	49	65	26	17	43	
Hotel	310	90	RM's	21	17	38	20	19	39	
Internal Capture				0	-2	-2	-8	-6	-14	
External Trips**				21	15	36	12	13	25	
Strip Retail Center <40k	822	10,600	SF	18	12	30	41	40	81	
Internal Capture				-3	-2	-5	-26	-24	-50	
External Trips**				15	10	25	15	16	31	
Fast Casual Restaurant		5,300	SF	4	4	8	43	36	79	
Internal Capture				-3	-1	-4	-11	-17	-28	
External Trips**				1	3	4	32	19	51	
Fine Dining Restaurant	931	3,000	SF	1	1	2	15	8	23	
Internal Capture				0	0	0	-3	-4	-7	
External Trips**				1	1	2	12	4	16	
Pass-By Reduction @ 44% PM				0	0	0	-5	-2	-7	
Final Trips**				1	1	2	7	2	9	
Brewery Tap Room	971	6,000	SF	4	0	4	35	24	59	
Internal Capture				-2	0	-2	-9	-12	-21	
External Trips**				2	0	2	26	12	38	
Total Site Generated Trips				64	86	150	197	155	352	
Total Internal Capture				-8	-8	-16	-74	-74	-148	
Total External Trips				56	78	134	123	81	204	
Total Pass-By Reductions				0	0	0	-5	-2	-7	
Total External/Final Trips				56	78	134	118	79	197	

* Excerpts from Institute of Transportation Engineers (ITE) - *Trip Generation Manual*, 11th Edition. ** NCHRP Internal Capture calculations. See Appendix B.

Trip Distribution

The external trips generated by the proposed Hyde Park Square development were distributed to the adjacent roadway network, by directional distribution, based on existing traffic volumes, existing traffic patterns, and experience related to land use patterns in the area. Considering these factors, the regional percentage of trips that enter and exit the proposed Hyde Park Square development site, during the AM and PM peak hours, are presented in Table 2, on page 15.

Hyde Park Square Development		AM Pea	ak Hour		PM Peak Hour			
External Traffic Station Orientation To/From	Er	ntering	E	xiting	Er	tering	Exiting	
	Volume	Percentage	Volume	Percentage	Volume	Percentage	Volume	Percentage
North on Edwards Road (SR 561)	409	14%	512	18%	604	20%	448	14%
South on Edwards Road (SR 561)	175	6%	111	4%	172	6%	123	4%
North on Michigan Avenue	58	2%	47	2%	86	2%	47	1%
South on Michigan Avenue	31	1%	47	1%	36	1%	27	1%
East on Erie Avenue	822	28%	435	15%	380	12%	914	29%
West on Erie Avenue	284	10%	552	19%	671	22%	282	9%
East on Observatory Avenue	743	26%	549	19%	495	16%	978	31%
West on Observatory Avenue	381	13%	630	22%	653	21%	352	11%
Total	2,903	100%	2,883	100%	3,097	100%	3,171	100%

 Table 2

 Existing Regional Traffic and Percentage Distribution

Trip distribution percentages for the proposed Hyde Park Square development are presented in Figure 3, along with the existing traffic volumes.

External Site Trips

The external site trips generated by the proposed Hyde Park Square development were assigned to the adjacent road network based on the trip distribution percentages contained in Table 2. The *External Site Trips* for the proposed Hyde Park Square development are presented in Figure 4 and the supportive data used to establish the external site trips are provided as Appendix B.

Pass-By Trips

Pass-by trips attracted from the existing adjacent road volumes of Edwards Road (SR 561), Erie Avenue, and Observatory Avenue by the proposed development project, were established along the site frontage. The *Pass-By Trips* for the proposed Hyde Park Square development are provided in Figure 5.

Final Site Trips

Final site trips of the proposed Hyde Park Square development, to be assigned to the study area key intersections, were determined by subtracting the pass-by trips from the external site trips. The *Final Site Trips* for the proposed Hyde Park Square development are presented in Figure 6.

al Site Trip Validation ds Road (SR 561) rds Road (SR 561) an Avenue gan Avenue enue enue atory Avenue vatory Avenue	AM In 8 3 1 1 16 5 15 7 56	AM Out 14 3 1 12 15 15 15 17 78	PM In 25 7 2 1 15 27 20 26 123	PM Out 11 3 1 24 7 25 9 81	← 15 (7) Erie Avenue 5 (27) →	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} \bullet & \bullet \\ \bullet & \bullet \\ \hline & \hline & \bullet \\ \hline \hline \hline & \bullet \\ \hline \hline \hline & \bullet \\ \hline \hline \hline \hline \hline & \bullet \\ \hline \hline$	← 64 (55) ← 5ite Access 1 38 (105) →	Hyde Park Square Park Square Development ← 18 (18) Site Access 2 — 14 (26) →	 13(1
opment on County, Ohio	N.T.S.				\leftarrow 17 (9) Observatory Avenue — 7 (26) \rightarrow	$\begin{array}{c c} & & & \\ \hline \\ & & & \\ \hline & & \\ \hline & & & \\ \hline \\ & & & \\ \hline \\ \hline$	▲ 15 (20) ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	← 15 (20) 15 (25) →	External Site Trips AM = 56 (In) / 78 (Out) PM = 123 (In) / 81 (Out) Observatory Avenue	

External Station - Externa To/From North on Edward To/From South on Edward To/From North on Michiga To/From South on Michig To/From East on Erie Ave To/From West on Erie Ave To/From East on Observa To/From West on Observation

Figure 4

Hyde Park Square Develog City of Cincinnati, Hamilto

External Site Trips

xx - AM Peak Hour (xx) - PM Peak Hour

					← 0 (0) Erie Avenue 0 (-1) →	$(\mathbf{r}_{-}) \stackrel{\mathbf{r}_{-}}{\rightarrow} (\mathbf{r}_{-}) \mathbf{r$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Hyde Park Square
External Station - Pass-By Trip Validation To/From North on Edwards Road (SR 561) To/From South on Edwards Road (SR 561) To/From North on Michigan Avenue To/From South on Michigan Avenue To/From East on Erie Avenue To/From West on Erie Avenue To/From West on Observatory Avenue To/From West on Observatory Avenue	AM In 0 0 0 0 0 0 0 0	AM Out 0 0 0 0 0 0 0 0	PM In -1 0 0 -1 -1 -1 -1 -1 -5	PM Out 0 0 0 -1 0 -1 0 -1 0 -2		← 0 (-2)	↓ 0 (0) ↓ 0 (1)	<u>Hyde</u> ← 0 (1) — Site Access 1 0 (4) →	Park Square Development Site Access 2 0 (1
Figure 5	N.T.S.				← 0 (0) Observatory Avenue — 0 (-1) →	$(0) 0 \rightarrow 0 (-1) \rightarrow 0 (-1) (0) (-1) (-1) (-1) (-1) (-1) (-1) (-1) (-1$		← 0 (0-1) 0 (-1)→	<u>Pass-By Trips</u> AM = 0 (In) / 0 (Out) PM = -5 (In) / -2 (Out) ——— Observatory Avenue
Hyde Park Square Development City of Cincinnati, Hamilton County, Ohio Pass-By Trip Reductions xx - AM Peak Hour (xx) - PM Peak Hour)) 0►	Edwards Road (SR 561) 0 (0)		

	← 15 (7) Erie Avenue 5 (26) →	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Hyde Park Square
<u>vi Out</u> 11 3 1 23 7 24 <u>9</u> 79		(7-) 0 + (Hyde Park Square Development 4 -18 (18)* $-$ Site Access 1 Site Access 2 38 (105)* \rightarrow 14 (26)* $-$ *Site Trips includes both External and Pass-By Trips. $ -$
	← 17 (9) Observatory Avenue — 7 (25) →	Edwards Road (SR 561) $(c1) = (c1) = (c1) = (c1) = (c1) = (c2) = (c2) = (c1) =$	PM = 118 (In) / 79 (Out) ← 15 (19) 15 (24) →

External Station - Final Site Trip Validation	AM In	AM Out	PM In	PM O
To/From North on Edwards Road (SR 561)	8	14	24	11
To/From South on Edwards Road (SR 561)	3	3	7	3
To/From North on Michigan Avenue	1	1	2	1
To/From South on Michigan Avenue	1	1	1	1
To/From East on Erie Avenue	16	12	14	23
To/From West on Erie Avenue	5	15	26	7
To/From East on Observatory Avenue	15	15	19	24
To/From West on Observatory Avenue	7	17	25	9

56

N.T.S.

78

118

Figure 6

Hyde Park Square Development City of Cincinnati, Hamilton County, Ohio

Final Site Trips

xx - AM Peak Hour (xx) - PM Peak Hour

Build Traffic Projections

The 2027 Build Traffic Projections were obtained by adding the 2024 Existing Traffic Volumes (see Figure 3) together with the Final Site Trips (see Figure 6). The **2027 Build Traffic Projections** are presented in Figure 7.

N.T.S.

Figure 7

Hyde Park Square Development City of Cincinnati, Hamilton County, Ohio

2027 Build Traffic Projections

xx - AM Peak Hour (xx) - PM Peak Hour Erie Avenue

TRAFFIC ANALYSIS

Site Access

The roadways that will provide access to the proposed site development are Edwards Road (SR 561), Observatory Avenue, Erie Avenue, and Michigan Avenue. Direct access to the proposed Hyde Park Square development will utilize the following locations:

- Edwards Road (SR 561) and Site Access 1, approximately 230 feet south of Erie Avenue (stop bar to centerline).
- Michigan Avenue and Site Access 2, approximately 150 feet south of Erie Avenue (stop bar to centerline).

Turn Lane Warrant Analysis

The need for left and right-turn lanes at the key unsignalized site access intersections was not considered after conducting a preliminary capacity analysis of the existing traffic operations at the Edwards Road (SR 561) and Erie Avenue, and Erie Avenue and Michigan Avenue intersections. As a result of the preliminary analysis and discussions with DOTE, the scope of services for the traffic analysis was expanded to include the following design alternatives for the Edwards Road (SR 561) Corridor and intersection with Erie Avenue:

Alternative 1 – Peak Hour On-Street Parking Restrictions

- Restripe pavement on Edwards Road (SR 561), between Erie Avenue and Observatory Avenue, and restrict the AM and PM peak hour on-street parking, by peak hour direction, to permit two (2) lanes of travel northbound (AM peak) and two (2) lanes of travel southbound (PM peak).
 - 380 Feet or approximately 19 parking spaces, at 20 feet/space, would be lost on the west side of Edwards Road (SR 561), during the restricted period.
 - 415 Feet or approximately 21 parking spaces, at 20 feet/space, would be lost on the east side of Edwards Road (SR 561), during the restricted period.
- Restripe pavement at the Edwards Avenue (SR 561) and Erie Avenue intersection, to provide the following:
 - One (1) shared northbound through/left turn lane.
 - One (1) northbound right turn lane.
 - One (1) southbound left turn lane.
 - One (1) southbound through/right turn lane.

Alternative 2 – Dedicated Northbound Left Turn Lane

- Restripe pavement on Edwards Road (SR 561), between Erie Avenue and Observatory Avenue, and restrict the PM peak hour on-street parking to permit two (2) southbound lanes of travel.
 - 380 Feet or approximately 19 parking spaces, at 20 feet/space, would be lost on the west side of Edwards Road (SR 561), during the restricted period.
- Restripe pavement and modify traffic signal phasing and timing at the Edwards Avenue (SR 561) and Erie Avenue intersection, to provide the following:
 - One (1) exclusive northbound left turn lane.
 - One (1) northbound through/right turn lane.
 - Two (2) southbound lanes.
- A dedicated southbound left turn lane will be provided on Edwards Avenue (SR 561), at the Site Access 1 intersection.
- On-street parking on the east side of Edwards Road (SR 561) will be removed, as necessary, for geometric alignment.
 - Restripe northbound Edwards Road (SR 561) to provide approximately 205 feet of shift taper.
 - 415 Feet or approximately 21 parking spaces, at 20 feet/space, all would be permanently removed on the east side of Edwards Road (SR 561).

Alternative 3 – Dedicated Northbound Left/Through/Right Turn Lanes

- Restripe pavement and modify traffic signal phasing and timing at the Edwards Avenue (SR 561) and Erie Avenue intersection, to provide the following:
 - One (1) exclusive northbound left turn lane.
 - One (1) northbound through lane.
 - One (1) northbound through/right turn lane.
 - One (1) southbound lane.
 - 253 feet or approximately 13 parking spaces, at 20 feet/space, would be permanently removed on the west side of Edwards Road (SR 561) and 217 feet or approximately 11 parking spaces would be permanently removed on the east side of Edwards Road (SR 561), between Erie Avenue and Site Access 1.
- A dedicated southbound left turn lane will be provided on Edwards Avenue (SR 561), at the Site Access 1 intersection.

- Restripe pavement on Edwards Road (SR 561), between the Hyde Park Elementary School driveway and Observatory Avenue, and restrict the PM peak hour on-street parking to permit two (2) southbound lanes of travel.
 - 125 Feet or approximately 6 spaces, at 20 feet/space, would be lost on the west side of Edwards Road (SR 561), during the restricted period.

A geometric layout of the 3 alternatives, including the existing geometry, is graphically presented in Figure 8.

Of note, the on-street parking spaces were field measured on both sides of Edwards Avenue (SR 561), between Erie Avenue and Observatory Avenue. The distances identified in Figure 8 excludes all driveways, fire hydrants, and areas currently signed "No Parking Anytime".

Capacity and Level of Service

Level of service (LOS), as defined in the *Highway Capacity Manual (HCM), 7th Edition*, is "a quality measure describing operational conditions within a traffic stream, generally in terms of such service measures as speed and travel time, freedom to maneuver, traffic interruptions, and comfort and convenience." LOS is a function of the control delay per vehicle, and it is the standard used to evaluate traffic flow at an intersection. The goal for the operation of roadways is to maintain the best level of service possible with an overall intersection LOS of D as an acceptable minimum. The criteria used by *HCM* are provided in Table 3.

Table 3Level of Service Criteria for Signalizedand Unsignalized Intersections

Signalized Intersection

Level of Service	Delay Range (sec/veh)	Expected Delay
A	<10	Extremely Favorable Progression
В	>10 and < 20	Good Progression
С	>20 and < 35	Fair Progression
D	>35 and < 55	Unfavorable Progression
E	>55 and < 80	Poor Progression
F	>80 or v/c > 1	Excessive Traffic Delay

Unsignalized Intersection

Level of Service	Delay Range (sec/veh)	Expected Delay	
A	<10	Little or No Delay	
В	>10 and < 15	Short Traffic Delay	
С	>15 and < 25	Average Traffic Delay	
D	>25 and < 35	Long Traffic Delay	
E	>35 and < 50	Very long Traffic Delay	
F	>50 or v/c >1	Excessive Traffic Delay	

A capacity analysis of the study area intersections was performed for the **2024 Existing Traffic Volumes** and **2027 Build Traffic Projections,** using the Highway Capacity Software 2024 (HCS2024) and the results are provided in Table 4, on pages 26 and 27.

Hyde Park Square Development		20 Existing	24 g Traffic	2027 Traffic Proje	Build ctions – Alt 1	2027 Build Traffic Projections – Alt 2		2027 Build Traffic Projections – Alt 3	
				-	LOS (De	lay, Sec.)			
		АМ	PM	AM	РМ	АМ	PM	АМ	РМ
Edwards	s Road (SR 561) and Erie Ave	nue						
	LT	B (15.3)	B (18.9)	B (10.0)	B (18.3)	B (14.6)	B (19.3)	B (14.6)	B (19.3)
EB	TR	B (15.4)	B (19.8)	B (10.1)	B (19.2)	B (14.7)	C (20.4)	B (14.7)	C (20.4)
	Approach	B (15.4)	B (19.3)	B (10.1)	B (18.7)	B (14.7)	B (19.8)	B (14.7)	B (19.8)
	L	B (17.1)	C (23.9)	B (11.3)	C (23.4)	B (16.4)	C (24.6)	B (16.4)	C (24.6)
WB	Т	C (20.9)	B (15.8)	B (13.1)	B (15.0)	B (19.7)	B (15.8)	B (19.7)	B (15.8)
	R	C (21.5)	B (16.1)	B (13.3)	B (15.3)	C (20.2)	B (16.1)	C (20.2)	B (16.1)
	Approach	C (21.0)	B (16.8)	B (13.1)	B (16.1)	B (19.8)	B (16.9)	B (19.8)	B (16.9)
	LTR	B (13.9)	B (15.0)	N/A	N/A	N/A	N/A	N/A	N/A
	LT	N/A	N/A	C (20.6)	B (15.1)	N/A	N/A	N/A	N/A
	L	N/A	N/A	N/A	N/A	B (15.9)	B (16.9)	B (15.9)	B (16.9)
NB	TR	N/A	N/A	N/A	N/A	C (31.5)	C (33.5)	N/A	N/A
	Т	N/A	N/A	N/A	N/A	N/A	N/A	C (28.3)	C (28.3)
	R	N/A	N/A	B (16.4)	B (12.1)	N/A	N/A	C (21.0)	C (20.6)
	Approach	B (13.9)	B (15.0)	C (20.1)	B (14.7)	C (30.4)	C (32.2)	C (26.5)	C (26.3)
SB	L	C (20.3)	C (28.2)	C (31.3)	C (27.1)	C (21.2)	C (28.7)	C (20.1)	C (24.5)
	TR	B (13.8)	B (15.9)	C (21.0)	B (17.3)	C (29.9)	D (46.0)	C (29.9)	D (46.0)
	Approach	B (16.4)	C (20.7)	C (25.0)	C (21.1)	C (26.5)	D (39.5)	C (26.1)	D (37.8)
Overall	ntersection	B (18.0)	B (18.5)	B (16.5)	B (18.2)	C (22.2)	C (27.2)	C (21.5)	C (25.8)
Edwards	s Road (SR 561) and Observa	tory Avenue	<u> </u>					
	L	D (37.1)	C (29.7)	D (40.5)	C (34.2)				
EB	TR	B (15.7)	D (48.3)	B (15.7)	D (48.3)				
	Approach	B (16.7)	D (47.5)	B (17.3)	D (47.2)				
	L	B (18.4)	D (39.2)	B (18.4)	D (39.2)				
WB	TR	D (43.1)	C (28.0)	D (48.1)	C (30.1)				
	Approach	D (42.1)	C (28.6)	D (46.9)	C (30.6)				
	LT	C (22.1)	C (21.4)	C (22.2)	C (21.5)	Same LOS	Results as	Same LOS	Results as
NB	R	C (20.6)	C (21.3)	C (20.6)	C (21.3)	Altern	ative 1	Altern	ative 1
	Approach	C (21.7)	C (21.4)	C (21.8)	C (21.5)				
	L	B (17.4)	B (15.9)	B (17.8)	B (16.6)				
SB	TR	B (13.6)	B (10.4)	B (14.0)	B (10.5)				
	Approach	B (15.7)	B (14.2)	B (16.1)	B (14.8)				
Overall	ntersection	C (29.0)	C (31.5)	C (31.2)	C (31.9)				
Erie Ave	enue and Michig	gan Avenue				L			
	LT	A (9.5)	B (12.2)	A (9.5)	B (12.2)				
EB	TR	A (9.6)	B (12.6)	A (9.6)	B (12.6)				
	Approach	A (9.5)	B (12.4)	A (9.5)	B (12.4)				
	LT	B (11.7)	A (9.2)	B (11.9)	A (9.3)				
WB	TR	B (12.1)	A (9.3)	B (12.3)	A (9.5)	Same LOS Results as Sam			
	Approach	B (11.9)	A (9.3)	B (12.1)	A (9.4)			Same LOS	Results as
	LTR	B (17.0)	B (17.0)	B (17.2)	B (17.5)	Alternative 1 Alternative 1			
NB	Approach	B (17.0)	B (17.0)	B (17.2)	B (17.5)				
~ ~	LTR	B (17.5)	B (18.0)	B (17.5)	B (18.1)				
SB	Approach	B (17.5)	B (18.0)	B (17.5)	B (18.1)				
Overall Intersection		B (11.5)	B (12.0)	B (11.7)	B (12.1)				

Table 4Levels of Service Results

Hyde Park Square Development		20 Existing	24 g Traffic	2027 Traffic Proje	Build ctions – Alt 1	2027 Build Traffic Projections – Alt 2		2027 Build Traffic Projections – Alt 3	
		LOS (Delay, Sec.)							
		AM	PM	АМ	PM	AM	PM	AM	PM
Edwards	Road (SR 561)) and Site Acc	ess 1						
	LR	N/A	N/A	B (11.6)	B (15.0)	B (12.0)	C (15.3)	B (12.8)	C (18.7)
vvв	Approach	N/A	N/A	B (11.6)	B (15.0)	B (12.0)	C (15.3)	B (12.8)	C (18.7)
	LT	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	L	N/A	N/A	A (8.0)	A (8.3)	A (8.0)	A (8.3)	A (8.0)	A (8.3)
28	Т	N/A	N/A	A (0.1)	A (0.4)	-	-	-	-
	Approach	N/A	N/A	A (0.4)	A (1.3)	A (0.4)	A (1.0)	A (0.4)	A (1.0)
Michiga	n Avenue and S	Site Access 2				-	-		
EB	LR	N/A	N/A	A (9.0)	A (9.0)	Same LOS Results as Alternative 1			
	Approach	N/A	N/A	A (9.0)	A (9.0)				
	L	N/A	N/A	A (7.4)	A (7.3)			Same LOS	8 Results as
NB	Т	N/A	N/A	A (0.0)	A (0.0)			Alternative 1	
	Approach	N/A	N/A	A (0.2)	A (0.2)				

Table 4Levels of Service Results (Continued)

For the complete HCS capacity analysis, see Appendix C.

Based on the level of service analysis completed and summarized in Table 4, the intersection capacity analysis results for the **2027** *Build Traffic Projections* are expected to operate satisfactory, for all intersections and all alternatives. Therefore, either alternative can be installed and expected to operate satisfactorily with the proposed Hyde Park Square development.

Turn Lane Storage Length Calculations

Considering that the capacity analysis results did not identify any one alternative (1, 2, or 3) as better than the others, the back of queue storage lane lengths were calculated, along with the capacity analysis, to determine the alternative that provides the best operations for the proposed Hyde Park Square development and the motoring public, on the Edwards Road (SR 561) corridor.

The distance between the Edwards Road (SR 561) and Erie Avenue and Edwards Road (SR 561) and Site Access 1 intersections is approximately 230 feet (stop bar to centerline). The southbound left turn movement at the Edwards Road (SR 561) and Site Access 1 intersection was identified as a concern by DOTE. Currently, no dedicated northbound left turn lane is available at the Edwards Road (SR 561) and Erie Avenue intersection; however, a southbound left turn lane is provided. Therefore, a northbound left turn lane can be provided, at the Edwards Road (SR 561) and Erie Avenue intersection, without any road widening required.

The back of queue lengths for the northbound left turn lane, at the Edwards Road (SR 561) and Erie Avenue, and the southbound left turn lane, at the Edwards Road (SR 561) and Site Access 1 intersections, for the 3 alternatives are presented as follows in Table 5.

		2027 Build Traffic Projections Alternative 1	2027 Build Traffic Projections Alternative 2	2027 Build Traffic Projections Alternative 3							
			Back of Queue Lane Length*								
Edward	Edwards Avenue (SR 561) and Erie Avenue										
	LT	167 Feet	N/A	N/A							
	L	N/A	14 Feet	14 Feet							
NB	TR	N/A	255 Feet	N/A							
	Т	N/A	N/A	206 Feet							
	R	22 Feet	N/A	32 Feet							
Edward	Edwards Avenue (SR 561) and Site Access 1										
SB	LT	128 Feet	N/A	N/A							
	L	N/A	128 Feet	128 Feet							

 Table 5

 Back of Queue Lane Length Results

*Greater distance AM Peak vs PM Peak.

Based on the back of queue results, all alternatives provide sufficient distance for storage of left turn vehicles between the Edwards Road (SR 561) and Erie Avenue and Edwards Road (SR 561) and Site Access 1 intersections, with a back-to-back left turn lane distance of 192 feet (including 50 feet of diverging taper). The northbound back-of-queue (LT/TR/T), at the Erie Avenue intersection, is acceptable for all alternatives, except Alternative 2. Alternative 2's back of queue extends about 25 feet (255' minus 230') past the centerline of Site Access 1.

To prevent Site Access 1 from being blocked, a "Do Not Block Driveway" pole mounted sign should be installed at the site driveway.

The back of queue lane length results is available in Appendix C, along with the capacity results.

Traffic Safety

The Hyde Park Elementary School is in the northwest corner of the Edwards Road (SR 561) and Observatory Avenue intersection. Access to the school's parking lot and for parent drop-off and pick-up of students, is located on Edwards Road (SR 561), approximately 470 feet south of stop bar at Erie Avenue.

Currently, a restrictive 20 mph school zone sign is installed on Edwards Road (SR 561) and Observatory Avenue. Crosswalks, with pedestrian push buttons, are installed at the key intersections of Edwards Road (SR 561) and Erie Avenue, Edwards Road (SR 561) and Observatory Avenue, and Erie Avenue and Michigan Avenue. Additionally, manual crossing assistance (an adult crossing guard) is provided at the Edwards Road (SR 561) and Observatory Avenue intersection, during the AM start and PM end of each school day, to assist safe access for students and parents who walk to the elementary school.

Field observations were conducted during the AM and PM school peak periods and the observations revealed that student drop-offs occur with no major impact to traffic operations on the Edwards Road (SR 561) corridor, during the AM drop-off period. However, during the PM student pick-up period, traffic gridlock was observed. Arriving parents use the permitted on-street parking spaces on the west side of Edwards Road (SR 561), between Erie Avenue and Observatory Avenue, to park then walk to the school to pick up their school child. Since the southbound Edwards Road (SR 561) parking lane is occupied, parents staying in their vehicles use the southbound travel lane for staging while waiting for access to the parking lot/school, which impedes the southbound flow of traffic on Edwards Road (SR 561).

Also, access to the parking garage at 3427 Edwards Road (SR 561), on the west side and just north of the Hyde Park Elementary School, was blocked by waiting parents, which prevented access for all traffic; more importantly, northbound traffic, to the garage. Lastly, the northbound traffic operations were further compromised when on-street parking occurred on the east side of Edwards Road (SR 561), where permitted, between Erie Avenue and the Hyde Park Elementary School driveway. The congestion related to the PM student pick-up lasted about 45 minutes.

Based on observations, police enforcement at the Edwards Road (SR 561) and Hyde Park Elementary School intersection should be considered to maintain safe operations of traffic on Edwards Road (SR 561), during the school's end of day PM peak. Additionally, the PM peak hour parking restriction described in Alternative 1 and 2 should be installed, which will allow parents to park in the curb lane and maintain one (1) southbound through lane for motorists.

Site Access and Parking Needs

Direct access to the proposed Hyde Park Square development will utilize the following locations:

- Edwards Road (SR 561) and Site Access 1, approximately 230 feet south of Erie Avenue (stop bar to centerline).
- Michigan Avenue and Site Access 2, approximately 150 feet south of Erie Avenue (stop bar to centerline).

The site circulation provided in the proposed development is adequate for the assumed land uses.

IMPROVEMENT ANALYSIS

Status of Improvements Previously Recommended

There are no other known developments or improvements planned within the study area.

Improvements to Accommodate Base Traffic

Based on the current traffic operation issues discussed in this report, the roadway improvements recommended to accommodate the **2024 Existing Traffic** (excluding site traffic) are as follows:

Edwards Road Corridor

- Restripe the southbound pavement on Edwards Road (SR 561), between Erie Avenue and Observatory Avenue, with a lane line to allow the curb lane to function as a lane of travel during the restricted parking periods.
- Restrict on-street parking on the west side of Edwards Road (SR 561) during the 12:00 PM – 6:00 PM peak hour period, between Erie Avenue and the Hyde Park Elementary School driveway.
- Install "No Parking or Stopping 12 PM 6 PM Mon thru Fri Except During After School Dismissal" pole mounted signs on the west side of Edwards Road (SR 561), within the restricted area.
- Police enforcement should be required to maintain safe traffic operations on Edwards Road (SR 561) at the Hyde Park Elementary School driveway, during the standard time allotment for the schools PM period.
- 5. An adult crossing guard should be considered at the Edwards Road (SR 561) and Erie Avenue intersection during the AM and PM school peak periods if student safety concerns arise.

Based on the analysis contained in this report, the roadway improvements recommended to accommodate the **2027** *Build Traffic Projections* (including site traffic) are as follows:

Edwards Road (SR 561) and Erie Avenue Intersection

- 1. Restripe Edwards Road (SR 561) and Erie Avenue intersection to provide the following:
 - One (1) northbound left turn lane a total of 100 feet in length, including 50 feet of diverging taper.
 - One (1) northbound shared through and right turn lane.
 - Adjust striping on the north side of the intersection for proper geometric alignment.
 - Modify traffic signal to provide appropriate timing and phasing.

Edwards Road (SR 561) and Site Access 1 Intersection

- Construct a new full operational site access driveway on the east side of Edwards Road (SR 561), approximately 230 feet south of Erie Avenue (stop bar to centerline), for access to the proposed Hyde Park Square development.
- 2. Provide one (1) eastbound lane for entering traffic.
- 3. Provide one (1) westbound lane for exiting traffic.
- 4. Install a "Do Not Block Driveway" pole mounted sign on Edwards Road (SR 561) at the site driveway.

Michigan Avenue and Site Access 2 Intersection

- 1. Construct a new full operational site driveway on the west side of Michigan Avenue, approximately 150 feet south of Erie Avenue (stop bar to centerline), for access to the proposed Hyde Park Square development.
- 2. Provide one (1) westbound lane for entering traffic.
- 3. Provide one (1) eastbound lane for exiting traffic.

<u>General</u>

- 1. Restripe Edwards Road (SR 561), along the site frontage, to provide:
 - One (1) lane of travel in the northbound direction.
 - Two (2) lanes of travel in the southbound direction.
 - A center two-way left turn lane (TWLTL) approximately 330 feet (stop bar to US Bank entering driveway) to provide left turn storage for the driveways on both sides of Edwards Road (SR 561)
- 2. Remove all on-street parking on east side of Edwards Road (SR 561), along site frontage.
- Install "No Stopping or Parking Anytime" pole mounted signs on the east side of Edwards Road (SR 561), within the restricted area.
- 4. Modify traffic signal timing and phasing at the Edwards Road (SR 561) and Erie Avenue, and Michigan Avenue and Erie Avenue intersections, as necessary.

A geometric layout of the recommended improvements presented in Figure 9, on page 33.

Based upon engineering judgment and the analysis contained in this report, the proposed Hyde Park Square development upon construction of the recommended improvements will not significantly impact operations on the adjacent roadway network.

While developing the recommended improvements for the proposed Hyde Park Square development, the prior described student pick-up traffic operations and congestion were shared with DOTE. Considering that the Hyde Park Elementary traffic congestion is a pre-existing condition and permanent on-street parking lanes were recently installed on both sides of Edwards Road (SR 561), between Erie Avenue and Observatory Avenue, DOTE requested an additional analysis, using SYNCHRO plus SimTraffic 12 computer software program, comparing the travel times and back of queue results for the following scenarios:

- Scenario 1 2024 Existing Traffic with 2024 Existing Geometry.
- Scenario 2 2024 Existing Traffic with 2024 Recommended Improvements.
- Scenario 3 2027 Projected Traffic with 2024 Existing Geometry.
- Scenario 4 2027 Projected Traffic with 2024 and 2027 Recommended Improvements.

Of note, one (1) travel lane, in both the northbound and southbound directions, was coded in the SYNCHRO files on Edwards Road (SR 561) at the key intersections of Erie Avenue, Observatory Avenue, and Site Access 1 for all analyses based on existing geometry (1 travel lane and 1 lane of permanent on-street parking).

The travel times and back of queue length results for the four (4) scenarios are presented in Table 6 as follows and on page 35.

	Scenario Existing T 2024 Existir	o 1 - 2024 Traffic with ng Geometry	Scenario Existing T 2024 Impr	o 2 - 2024 Traffic with Provements	Scenario Projected 2024 Existin	o 3 - 2027 Traffic with og Geometry	Scenario Projected 2024/2027 In	9 4 - 2027 Traffic with aprovements
				Travel Time	es (seconds)			
	AM	PM	AM	PM	AM	PM	AM	PM
Edwards Avenue (SR	561) - Northbe	ound						
Observatory Avenue	24.0	23.9	24.8	35.7	44.9	27.6	32.7	37.4
Site Access 1	N/A	N/A	N/A	N/A	10.8	9.2	10.8	9.7
Erie Avenue	38.2	41.3	42.5	39.2	22.6	27.2	27.7	29.4
Total	62.2	65.2	67.3	74.9	78.3	64.0	71.3	76.5
Edwards Avenue (SR	561) - Southb	ound						
Observatory Avenue	20.6	45.3	21.9	66.8	23.2	53.0	35.8	30.9
Site Access 1	N/A	N/A	N/A	N/A	9.3	10.7	9.1	8.8
Erie Avenue	29.8	29.8	29.3	34.9	28.5	23.0	25.8	23.9
Total	50.4	75.1	51.2	101.7	61.0	86.7	70.8	63.7

Table 6Travel Times and Back of Queue Lane Length Results

*Better result Scenario 1 vs Scenario 2 and Scenario 3 vs Scenario 4.

As shown in Table 6 above, the 2024 existing traffic travel times on Edwards Avenue (SR 561) are better in both the northbound and southbound directions, for both the AM and PM peak periods,

based on Scenario 1. However, the results are not as decisive for the 2027 projected traffic. During the AM peak period in the northbound direction, Scenario 4 is better, while Scenario 3 is better in the PM peak period. Similarly, during the AM peak period in the southbound direction, Scenario 3 is better, while Scenario 4 is better in the PM peak period.

		Scenario Existing T 2024 Existir	o 1 - 2024 Traffic with ng Geometry	Scenario Existing T 2024 Impr	o 2 - 2024 raffic with ovements	Scenario Projected 1 2024 Existin	9 3 - 2027 Fraffic with Ig Geometry	Scenario Projected 1 2024/2027 In	9 4 - 2027 Traffic with aprovements
					Back of Queu	e Lane Length			
		AM	PM	AM	PM	AM	РМ	AM	PM
Edwa	rds Avenue	(SR 561) and I	Erie Avenue						
ED	LT	220 Feet	282 Feet	185 Feet	259 Feet	229 Feet	244 Feet	236 Feet	284 Feet
ED	TR	176 Feet	225 Feet	136 Feet	188 Feet	169 Feet	200 Feet	177 Feet	244 Feet
	L	64 Feet	62 Feet	76 Feet	67 Feet	62 Feet	68 Feet	72 Feet	77 Feet
WB	Т	168 Feet	94 Feet	153 Feet	121 Feet	168 Feet	79 Feet	187 Feet	125 Feet
	TR	194 Feet	95 Feet	199 Feet	177 Feet	200 Feet	117 Feet	224 Feet	152 Feet
	LTR	161 Feet	249 Feet	165 Feet	293 Feet	173 Feet	218 Feet	N/A	N/A
NB	L	N/A	N/A	N/A	N/A	N/A	N/A	46 Feet	46 Feet
	TR	N/A	N/A	N/A	N/A	N/A	N/A	169 Feet	213 Feet
CD.	L	109 Feet	119 Feet	114 Feet	118 Feet	115 Feet	117 Feet	124 Feet	122 Feet
28	TR	210 Feet	347 Feet	230 Feet	340 Feet	238 Feet	344 Feet	303 Feet	335 Feet
Edwa	rds Avenue	(SR 561) and (Observatory Av	/enue					
ED	L	60 Feet	324 Feet	96 Feet	141 Feet	95 Feet	313 Feet	264 Feet	124 Feet
ED	TR	238 Feet	270 Feet	183 Feet	304 Feet	213 Feet	273 Feet	295 Feet	295 Feet
	L	333 Feet	158 Feet	278 Feet	83 Feet	332 Feet	213 Feet	334 Feet	87 Feet
VVD	TR	301 Feet	310 Feet	292 Feet	268 Feet	310 Feet	314 Feet	292 Feet	267 Feet
	LT	110 Feet	95 Feet	118 Feet	129 Feet	182 Feet	94 Feet	130 Feet	119 Feet
ND	R	75 Feet	93 Feet	76 Feet	93 Feet	76 Feet	76 Feet	49 Feet	92 Feet
CD.	L	118 Feet	131 Feet	109 Feet	218 Feet	126 Feet	144 Feet	152 Feet	216 Feet
30	TR	102 Feet	104 Feet	101 Feet	118 Feet	150 Feet	236 Feet	135 Feet	121 Feet
Erie A	Avenue and	Michigan Aver	iue						
ЕР	LT	80 Feet	108 Feet	77 Feet	189 Feet	84 Feet	128 Feet	96 Feet	228 Feet
ED	TR	81 Feet	123 Feet	85 Feet	186 Feet	89 Feet	134 Feet	104 Feet	231 Feet
	LT	201 Feet	128 Feet	195 Feet	118 Feet	203 Feet	119 Feet	209 Feet	118 Feet
VVD	TR	171 Feet	112 Feet	186 Feet	108 Feet	196 Feet	105 Feet	230 Feet	103 Feet
NB	LTR	40 Feet	40 Feet	45 Feet	53 Feet	57 Feet	67 Feet	60 Feet	73 Feet
SB	LTR	96 Feet	93 Feet	92 Feet	97 Feet	74 Feet	76 Feet	68 Feet	91 Feet
Edwa	rds Avenue	(SR 561) and S	Site Access 1						
WB	LR	N/A	N/A	N/A	N/A	59 Feet	61 Feet	65 Feet	78 Feet
NB	TR	N/A	N/A	N/A	N/A	N/A	19 Feet	N/A	N/A
0.0	LT	N/A	N/A	N/A	N/A	29 Feet	101 Feet	N/A	N/A
20	L	N/A	N/A	N/A	N/A	N/A	N/A	21 Feet	58 Feet

 Table 6 (Continued)

 Travel Times and Back of Queue Lane Length Results

*Better result Scenario 1 vs Scenario 2 and Scenario 3 vs Scenario 4.

Table 6 (Continued) above provides an abundance of information, yet the northbound approach at Edwards Avenue (SR 561) and Erie Avenue intersection and the southbound approach at the

Edwards Avenue (SR 561) and Observatory Avenue intersection are the specific results of importance in understanding which scenario provides the best results along the proposed Hyde Park Square development frontage.

In general, the back of queue lane length results on Edwards Avenue (SR 561), are better in both the northbound and southbound directions, for both the AM and PM peak periods, based on Scenario 1. Like travel time, the back of queue lane length results for the 2027 projected traffic are mixed. The northbound and southbound through/right approach, at the Erie Avenue intersection, and the southbound through/right approach, at the Observatory Avenue intersections results are better in Scenario 4, for both the AM and PM peak periods, while the southbound left is better in Scenario 3 at the Observatory Avenue intersection, for both the AM and PM peak periods.

Lastly, the back of queue lane length results for the southbound left turn versus the southbound left/through approach on Edwards Avenue (SR 561) at the Site Access 1 intersection is better in Scenario 4, for both the AM and PM peak periods.

Considering the results of the travel time and back of queue lane length analysis, Scenario 1 is the better option for existing 2024 traffic, excluding the after school pick-up operations of the Hyde Park Elementary School. Understanding the current after-school pick-up operations, the recommended improvements outlined in this section of the report are still considered valid.

Also considering the results of the travel time and back of queue lane length analysis, Scenario 4 is the better option for the 2027 projected traffic. While the travel time results were evenly mixed, overall, the improvements outlined in this section of the report are strengthened by the back of queue lane length results and an understanding of the current after-school pick-up operations.

The SimTraffic travel times and back of queue lane length results are available in Appendix D.

FINDINGS

Site Accessibility

The roadways that will provide access to the proposed site development are Edwards Road (SR 561) and Michigan Avenue. Direct access to the proposed Hyde Park Square development will utilize the following locations:

- Edwards Road (SR 561) and Site Access 1, approximately 230 feet south of Erie Avenue (stop bar to centerline).
- Michigan Avenue and Site Access 2, approximately 150 feet south of Erie Avenue (stop bar to centerline).

Traffic Impacts

At full build out, the proposed Hyde Park Square development will consist of the following land uses and densities:

Hyde Park Square Development

Land Use	Density
Multifamily Housing (Apartments and Townhomes)	182 Dwelling Units (DU)
Hotel	90 Rooms (RM)
Retail Stores	10,600 Square Feet (SF)
Fast Casual Restaurant	5,300 Square Feet (SF)
Fine Dining Restaurant	3,000 Square Feet (SF)
Brewery Tap Room	6,000 Square Feet (SF)
Total Development	24,900 SF/182 DU/90 RM

Bayer Becker corresponded with representatives of the Cincinnati Department of Transportation and Engineering (DOTE) to establish the parameters of the study. As such, the following existing and proposed key intersections define the study area of this report:

- Edwards Road (SR 561) and Erie Avenue.
- Edwards Road (SR 561) and Observatory Avenue.
- Erie Avenue and Michigan Avenue.
- Edwards Road (SR 561) and Site Access 1, Full Movement.
- Michigan Avenue and Site Access 2, Full Movement.

Need for Improvements

Based on the current traffic operation issues discussed in this report, the roadway improvements recommended to accommodate the **2024 Existing Traffic** (excluding site traffic) are as follows:

Edwards Road Corridor

- 1. Restripe the southbound pavement on Edwards Road (SR 561), between Erie Avenue and Observatory Avenue, with a lane line to allow the curb lane to function as a lane of travel during the restricted parking periods.
- Restrict on-street parking on the west side of Edwards Road (SR 561) during the 12:00 PM – 6:00 PM peak hour period, between Erie Avenue and the Hyde Park Elementary School driveway.
- Install "No Parking or Stopping 12 PM 6 PM Mon thru Fri Except During After School Dismissal" pole mounted signs on the west side of Edwards Road (SR 561), within the restricted area.
- Police enforcement should be required to maintain safe traffic operations on Edwards Road (SR 561) at the Hyde Park Elementary School driveway, during the standard time allotment for the schools PM period.
- 5. An adult crossing guard should be considered at the Edwards Road (SR 561) and Erie Avenue intersection during the AM and PM school peak periods if student safety concerns arise.

Based on the analysis contained in this report, the roadway improvements recommended to accommodate the **2027** *Build Traffic Projections* (including site traffic) are as follows:

Edwards Road (SR 561) and Erie Avenue Intersection

- 1. Restripe Edwards Road (SR 561) and Erie Avenue intersection to provide the following:
 - One (1) northbound left turn lane a total of 100 feet in length, including 50 feet of diverging taper.
 - One (1) northbound shared through and right turn lane.
 - Adjust striping on the north side of the intersection for proper geometric alignment.
 - Modify traffic signal to provide appropriate timing and phasing.

Edwards Road (SR 561) and Site Access 1 Intersection

 Construct a new full operational site access driveway on the east side of Edwards Road (SR 561), approximately 230 feet south of Erie Avenue (stop bar to centerline), for access to the proposed Hyde Park Square development.

- 2. Provide one (1) eastbound lane for entering traffic.
- 3. Provide one (1) westbound lane for exiting traffic.
- 4. Install a "Do Not Block Driveway" pole mounted sign on Edwards Road (SR 561) at the site driveway.

Michigan Avenue and Site Access 2 Intersection

- 1. Construct a new full operational site driveway on the west side of Michigan Avenue, approximately 150 feet south of Erie Avenue (stop bar to centerline), for access to the proposed Hyde Park Square development.
- 2. Provide one (1) westbound lane for entering traffic.
- 3. Provide one (1) eastbound lane for exiting traffic.

<u>General</u>

- 1. Restripe Edwards Road (SR 561), along the site frontage, to provide:
 - One (1) lane of travel in the northbound direction.
 - Two (2) lanes of travel in the southbound direction.
 - A center two-way left turn lane (TWLTL) approximately 330 feet (stop bar to US Bank entering driveway) to provide left turn storage for the driveways on both sides of Edwards Road (SR 561)
- 2. Remove all on-street parking on east side of Edwards Road (SR 561), along site frontage.
- 3. Install "No Stopping or Parking Anytime" pole mounted signs on the east side of Edwards Road (SR 561), within the restricted area.
- 4. Modify traffic signal timing and phasing at the Edwards Road (SR 561) and Erie Avenue, and Michigan Avenue and Erie Avenue intersections as necessary.

Compliance with Applicable Codes

All roadway improvements shall be constructed in accordance with Cincinnati Department of Transportation and Engineering (DOTE) requirements, as appropriate and applicable. Based upon engineering judgment and the analysis contained in this report, the proposed Hyde Park Square development, upon construction of the recommended improvements, will not significantly impact operations on the adjacent roadway network.

RECOMMENDATIONS

Site Access

The roadways that will provide access to the proposed site development are Edwards Road (SR 561) and Michigan Avenue. Direct access to the proposed Hyde Park Square development will utilize the following locations:

- Edwards Road (SR 561) and Site Access 1, approximately 230 feet south of Erie Avenue (stop bar to centerline).
- Michigan Avenue and Site Access 2, approximately 150 feet south of Erie Avenue (stop bar to centerline).

Roadway Improvements

Based on the current traffic operation issues discussed in this report, the roadway improvements recommended to accommodate the **2024 Existing Traffic** (excluding site traffic) are as follows:

Edwards Road Corridor

- Restripe the southbound pavement on Edwards Road (SR 561), between Erie Avenue and Observatory Avenue, with a lane line to allow the curb lane to function as a lane of travel during the restricted parking periods.
- Restrict on-street parking on the west side of Edwards Road (SR 561) during the 12:00 PM – 6:00 PM peak hour period, between Erie Avenue and the Hyde Park Elementary School driveway.
- Install "No Parking or Stopping 12 PM 6 PM Mon thru Fri Except During After School Dismissal" pole mounted signs on the west side of Edwards Road (SR 561), within the restricted area.
- Police enforcement should be required to maintain safe traffic operations on Edwards Road (SR 561) at the Hyde Park Elementary School driveway, during the standard time allotment for the schools PM period.
- 5. An adult crossing guard should be considered at the Edwards Road (SR 561) and Erie Avenue intersection during the AM and PM school peak periods if student safety concerns arise.

Based on the analysis contained in this report, the roadway improvements recommended to accommodate the **2027 Build Traffic Projections** (including site traffic) are as follows:

Edwards Road (SR 561) and Erie Avenue Intersection

- 1. Restripe Edwards Road (SR 561) and Erie Avenue intersection to provide the following:
 - One (1) northbound left turn lane a total of 100 feet in length, including 50 feet of diverging taper.
 - One (1) northbound shared through and right turn lane.
 - Adjust striping on the north side of the intersection for proper geometric alignment.
 - Modify traffic signal to provide appropriate timing and phasing.

Edwards Road (SR 561) and Site Access 1 Intersection

- Construct a new full operational site access driveway on the east side of Edwards Road (SR 561), approximately 230 feet south of Erie Avenue (stop bar to centerline), for access to the proposed Hyde Park Square development.
- 2. Provide one (1) eastbound lane for entering traffic.
- 3. Provide one (1) westbound lane for exiting traffic.
- 4. Install a "Do Not Block Driveway" pole mounted sign on Edwards Road (SR 561) at the site driveway.

Michigan Avenue and Site Access 2 Intersection

- 1. Construct a new full operational site driveway on the west side of Michigan Avenue, approximately 150 feet south of Erie Avenue (stop bar to centerline), for access to the proposed Hyde Park Square development.
- 2. Provide one (1) westbound lane for entering traffic.
- 3. Provide one (1) eastbound lane for exiting traffic.

<u>General</u>

- 1. Restripe Edwards Road (SR 561), along the site frontage, to provide:
 - One (1) lane of travel in the northbound direction.
 - Two (2) lanes of travel in the southbound direction.
 - A center two-way left turn lane (TWLTL) approximately 330 feet (stop bar to US Bank entering driveway) to provide left turn storage for the driveways on both sides of Edwards Road (SR 561)

- 2. Remove all on-street parking on east side of Edwards Road (SR 561), along site frontage.
- 3. Install "No Stopping or Parking Anytime" pole mounted signs on the east side of Edwards Road (SR 561), within the restricted area.
- 4. Modify traffic signal timing and phasing at the Edwards Road (SR 561) and Erie Avenue, and Michigan Avenue and Erie Avenue intersections, as necessary.

The recommended improvements are presented in Figure 9, on page 33.

Based upon engineering judgment and the analysis contained in this report, the proposed Hyde Park Square development upon construction of the recommended improvements will not significantly impact operations on the adjacent roadway network.

APPENDIX A 2024 EXISTING TRAFFIC COUNTS

Count Name: Erie and Edwards Site Code: 23-0083 Start Date: 11/06/2024 Page No: 3

Turning Movement Peak Hour Data (7:30 AM)

		Edwa	rds Road (SF	R 561)			Erie Avenue					Edwa	rds Road (SI	, 7 561)				Erie Avenue			
Chart Times			Southbound					Westbound					Northbound					Eastbound			
Start Time	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Int. Total
7:30 AM	8	52	43	0	103	62	163	16	3	244	8	42	2	0	52	21	60	6	0	87	486
7:45 AM	9	51	51	0	111	60	119	8	1	188	8	75	2	0	85	3	74	5	0	82	466
8:00 AM	10	57	24	0	91	67	112	8	0	187	12	54	0	0	66	4	45	4	0	53	397
8:15 AM	13	47	44	0	104	76	112	8	3	199	7	56	2	0	65	6	51	5	0	62	430
Total	40	207	162	0	409	265	506	40	7	818	35	227	6	0	268	34	230	20	0	284	1779
Approach %	9.8	50.6	39.6	0.0	-	32.4	61.9	4.9	0.9	-	13.1	84.7	2.2	0.0	-	12.0	81.0	7.0	0.0	-	-
Total %	2.2	11.6	9.1	0.0	23.0	14.9	28.4	2.2	0.4	46.0	2.0	12.8	0.3	0.0	15.1	1.9	12.9	1.1	0.0	16.0	-
PHF	0.769	0.908	0.794	0.000	0.921	0.872	0.776	0.625	0.583	0.838	0.729	0.757	0.750	0.000	0.788	0.405	0.777	0.833	0.000	0.816	0.915
All Vehicles (no classification)	40	207	162	0	409	265	506	40	7	818	35	227	6	0	268	34	230	20	0	284	1779
% All Vehicles (no classification)	100.0	100.0	100.0	-	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	-	100.0	100.0	100.0	100.0	-	100.0	100.0

Count Name: Erie and Edwards Site Code: 23-0083 Start Date: 11/06/2024 Page No: 5

Turning Movement Peak Hour Data (4:00 PM)

		Edwa	rds Road (SI	R 561)			Erie Avenue					Edwa	rds Road (SI	R 561)				Erie Avenue			
Stort Time			Southbound					Westbound					Northbound					Eastbound			
Start Time	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Int. Total
4:00 PM	13	77	47	0	137	41	72	10	0	123	8	71	8	0	87	15	128	8	0	151	498
4:15 PM	15	73	57	0	145	42	47	16	0	105	9	68	9	0	86	11	172	9	0	192	528
4:30 PM	13	78	66	0	157	38	52	11	0	101	16	62	1	0	79	6	158	8	0	172	509
4:45 PM	8	89	68	0	165	29	42	8	0	79	17	59	2	0	78	7	136	13	0	156	478
Total	49	317	238	0	604	150	213	45	0	408	50	260	20	0	330	39	594	38	0	671	2013
Approach %	8.1	52.5	39.4	0.0	-	36.8	52.2	11.0	0.0	-	15.2	78.8	6.1	0.0	-	5.8	88.5	5.7	0.0	-	-
Total %	2.4	15.7	11.8	0.0	30.0	7.5	10.6	2.2	0.0	20.3	2.5	12.9	1.0	0.0	16.4	1.9	29.5	1.9	0.0	33.3	-
PHF	0.817	0.890	0.875	0.000	0.915	0.893	0.740	0.703	0.000	0.829	0.735	0.915	0.556	0.000	0.948	0.650	0.863	0.731	0.000	0.874	0.953
All Vehicles (no classification)	49	317	238	0	604	150	213	45	0	408	50	260	20	0	330	39	594	38	0	671	2013
% All Vehicles (no classification)	100.0	100.0	100.0	-	100.0	100.0	100.0	100.0	-	100.0	100.0	100.0	100.0	-	100.0	100.0	100.0	100.0	-	100.0	100.0

Count Name: Edwards and Observatory Site Code: 23-0083 Start Date: 12/03/2024 Page No: 3

Turning Movement Peak Hour Data (7:30 AM)

		Edwa	rds Road (S	R 561)			Obs	servatory Ave	enue			Edwa	rds Road (S	R 561)			Obs	servatory Ave	enue		
Otort Time			Southbound	ł				Westbound					Northbound					Eastbound			l
Start Time	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Int. Total
7:30 AM	40	11	54	0	105	24	127	3	0	154	8	20	5	0	33	5	77	6	0	88	380
7:45 AM	20	18	31	0	69	45	132	9	0	186	5	27	8	0	40	4	101	5	0	110	405
8:00 AM	2	17	36	0	55	62	133	10	0	205	19	25	9	0	53	10	93	4	0	107	420
8:15 AM	6	12	41	0	59	55	135	8	0	198	16	20	13	0	49	4	68	4	0	76	382
Total	68	58	162	0	288	186	527	30	0	743	48	92	35	0	175	23	339	19	0	381	1587
Approach %	23.6	20.1	56.3	0.0	-	25.0	70.9	4.0	0.0	-	27.4	52.6	20.0	0.0	-	6.0	89.0	5.0	0.0	-	-
Total %	4.3	3.7	10.2	0.0	18.1	11.7	33.2	1.9	0.0	46.8	3.0	5.8	2.2	0.0	11.0	1.4	21.4	1.2	0.0	24.0	-
PHF	0.425	0.806	0.750	0.000	0.686	0.750	0.976	0.750	0.000	0.906	0.632	0.852	0.673	0.000	0.825	0.575	0.839	0.792	0.000	0.866	0.945
All Vehicles (no classification)	68	58	162	0	288	186	527	30	0	743	48	92	35	0	175	23	339	19	0	381	1587
% All Vehicles (no classification)	100.0	100.0	100.0	-	100.0	100.0	100.0	100.0	-	100.0	100.0	100.0	100.0	-	100.0	100.0	100.0	100.0	-	100.0	100.0

Count Name: Edwards and Observatory Site Code: 23-0083 Start Date: 12/03/2024 Page No: 5

Turning Movement Peak Hour Data (4:00 PM)

	1				1	5					· ·		,						1	·	
		Edwa	rds Road (S	R 561)			Obs	ervatory Ave	enue			Edwa	rds Road (S	R 561)			Obs	servatory Ave	enue		l
Ote at Time a			Southbound	ł				Westbound					Northbound					Eastbound			l
Start Time	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Int. Total
4:00 PM	19	21	75	0	115	42	83	8	0	133	18	20	9	0	47	5	138	9	0	152	447
4:15 PM	6	20	78	0	104	48	68	6	0	122	19	20	4	0	43	6	158	10	0	174	443
4:30 PM	9	22	74	0	105	48	62	3	0	113	18	21	5	0	44	3	154	5	0	162	424
4:45 PM	9	20	68	0	97	44	75	8	0	127	18	17	3	0	38	1	160	4	0	165	427
Total	43	83	295	0	421	182	288	25	0	495	73	78	21	0	172	15	610	28	0	653	1741
Approach %	10.2	19.7	70.1	0.0	-	36.8	58.2	5.1	0.0	-	42.4	45.3	12.2	0.0	-	2.3	93.4	4.3	0.0	-	-
Total %	2.5	4.8	16.9	0.0	24.2	10.5	16.5	1.4	0.0	28.4	4.2	4.5	1.2	0.0	9.9	0.9	35.0	1.6	0.0	37.5	-
PHF	0.566	0.943	0.946	0.000	0.915	0.948	0.867	0.781	0.000	0.930	0.961	0.929	0.583	0.000	0.915	0.625	0.953	0.700	0.000	0.938	0.974
All Vehicles (no classification)	43	83	295	0	421	182	288	25	0	495	73	78	21	0	172	15	610	28	0	653	1741
% All Vehicles (no classification)	100.0	100.0	100.0	-	100.0	100.0	100.0	100.0	-	100.0	100.0	100.0	100.0	-	100.0	100.0	100.0	100.0	-	100.0	100.0

Count Name: Erie and Michigan Site Code: 23-0083 Start Date: 11/06/2024 Page No: 3

Turning Movement Peak Hour Data (7:30 AM)

		Mi	ichigan Aven	nue				, Erie Avenue				Ňі	ichigan Aven	ue				Erie Avenue			l
Chart Times			Southbound	I				Westbound					Northbound					Eastbound			1
Start Time	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Int. Total
7:30 AM	6	4	2	0	12	5	222	8	0	235	6	11	3	0	20	5	109	5	0	119	386
7:45 AM	3	3	6	0	12	5	180	1	0	186	3	1	4	0	8	5	121	3	0	129	335
8:00 AM	10	0	6	0	16	8	180	6	0	194	1	0	0	0	1	5	71	1	0	77	288
8:15 AM	5	3	10	0	18	7	197	3	0	207	2	0	0	0	2	4	98	1	0	103	330
Total	24	10	24	0	58	25	779	18	0	822	12	12	7	0	31	19	399	10	0	428	1339
Approach %	41.4	17.2	41.4	0.0	-	3.0	94.8	2.2	0.0	-	38.7	38.7	22.6	0.0	-	4.4	93.2	2.3	0.0	-	-
Total %	1.8	0.7	1.8	0.0	4.3	1.9	58.2	1.3	0.0	61.4	0.9	0.9	0.5	0.0	2.3	1.4	29.8	0.7	0.0	32.0	-
PHF	0.600	0.625	0.600	0.000	0.806	0.781	0.877	0.563	0.000	0.874	0.500	0.273	0.438	0.000	0.388	0.950	0.824	0.500	0.000	0.829	0.867
All Vehicles (no classification)	24	10	24	0	58	25	779	18	0	822	12	12	7	0	31	19	399	10	0	428	1339
% All Vehicles (no classification)	100.0	100.0	100.0	-	100.0	100.0	100.0	100.0	-	100.0	100.0	100.0	100.0	-	100.0	100.0	100.0	100.0	-	100.0	100.0

Count Name: Erie and Michigan Site Code: 23-0083 Start Date: 11/06/2024 Page No: 5

Turning Movement Peak Hour Data (4:30 PM)

		Mi	chigan Aven	ue				, Erie Avenue				Mi	chigan Aven	ue				Erie Avenue			
Chart Times			Southbound	l				Westbound					Northbound					Eastbound			
Start Time	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Int. Total
4:30 PM	10	4	12	0	26	4	82	0	0	86	2	1	1	0	4	5	219	2	0	226	342
4:45 PM	4	2	15	0	21	6	70	1	0	77	6	6	0	0	12	1	220	1	0	222	332
5:00 PM	10	3	11	0	24	4	102	2	0	108	5	6	3	0	14	3	201	7	0	211	357
5:15 PM	9	2	4	0	15	1	107	1	0	109	3	1	2	0	6	3	216	8	0	227	357
Total	33	11	42	0	86	15	361	4	0	380	16	14	6	0	36	12	856	18	0	886	1388
Approach %	38.4	12.8	48.8	0.0	-	3.9	95.0	1.1	0.0	-	44.4	38.9	16.7	0.0	-	1.4	96.6	2.0	0.0	-	-
Total %	2.4	0.8	3.0	0.0	6.2	1.1	26.0	0.3	0.0	27.4	1.2	1.0	0.4	0.0	2.6	0.9	61.7	1.3	0.0	63.8	-
PHF	0.825	0.688	0.700	0.000	0.827	0.625	0.843	0.500	0.000	0.872	0.667	0.583	0.500	0.000	0.643	0.600	0.973	0.563	0.000	0.976	0.972
All Vehicles (no classification)	33	11	42	0	86	15	361	4	0	380	16	14	6	0	36	12	856	18	0	886	1388
% All Vehicles (no classification)	100.0	100.0	100.0	-	100.0	100.0	100.0	100.0	-	100.0	100.0	100.0	100.0	-	100.0	100.0	100.0	100.0	-	100.0	100.0

APPENDIX B

TRIP GENERATION EXCEPTS & NCHRP INTERNAL CAPTURE CALCULATIONS

Land Use: 221 Multifamily Housing (Mid-Rise)

Description

Mid-rise multifamily housing includes apartments and condominiums located in a building that has between four and 10 floors of living space. Access to individual dwelling units is through an outside building entrance, a lobby, elevator, and a set of hallways.

Multifamily housing (low-rise) (Land Use 220), multifamily housing (high-rise) (Land Use 222), offcampus student apartment (mid-rise) (Land Use 226), and mid-rise residential with ground-floor commercial (Land Use 231) are related land uses.

Land Use Subcategory

Data are presented for two subcategories for this land use: (1) not close to rail transit and (2) close to rail transit. A site is considered close to rail transit if the walking distance between the residential site entrance and the closest rail transit station entrance is ½ mile or less.

Additional Data

For the six sites for which both the number of residents and the number of occupied dwelling units were available, there were an average of 2.5 residents per occupied dwelling unit.

For the five sites for which the numbers of both total dwelling units and occupied dwelling units were available, an average of 96 percent of the total dwelling units were occupied.

The technical appendices provide supporting information on time-of-day distributions for this land use. The appendices can be accessed through either the ITETripGen web app or the trip generation resource page on the ITE website (https://www.ite.org/technical-resources/topics/trip-and-parking-generation/).

It is expected that the number of bedrooms and number of residents are likely correlated to the trips generated by a residential site. To assist in future analysis, trip generation studies of all multifamily housing should attempt to obtain information on occupancy rate and on the mix of residential unit sizes (i.e., number of units by number of bedrooms at the site complex).

The sites were surveyed in the 1990s, the 2000s, the 2010s, and the 2020s in Alberta (CAN), California, District of Columbia, Florida, Georgia, Illinois, Maryland, Massachusetts, Minnesota, Montana, New Jersey, New York, Ontario (CAN), Oregon, Utah, and Virginia.

Source Numbers

168, 188, 204, 305, 306, 321, 818, 857, 862, 866, 901, 904, 910, 949, 951, 959, 963, 964, 966, 967, 969, 970, 1004, 1014, 1022, 1023, 1025, 1031, 1032, 1035, 1047, 1056, 1057, 1058, 1071, 1076

Multifamily Housing (Mid-Rise) Not Close to Rail Transit (221)

Vehicle Trip Ends vs: Dwelling Units

On a: Weekday,

Peak Hour of Adjacent Street Traffic,

One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 30

Avg. Num. of Dwelling Units: 173

Directional Distribution: 23% entering, 77% exiting

Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.37	0.15 - 0.53	0.09

Multifamily Housing (Mid-Rise) Not Close to Rail Transit (221)

Vehicle Trip Ends vs: Dwelling Units

On a: Weekday,

Peak Hour of Adjacent Street Traffic,

One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 31

Avg. Num. of Dwelling Units: 169

Directional Distribution: 61% entering, 39% exiting

Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.39	0.19 - 0.57	0.08

Data Plot and Equation

Description

A hotel is a place of lodging that provides sleeping accommodations and supporting facilities such as a full-service restaurant, cocktail lounge, meeting rooms, banquet room, and convention facilities. A hotel typically provides a swimming pool or another recreational facility such as a fitness room. All suites hotel (Land Use 311), business hotel (Land Use 312), motel (Land Use 320), and resort hotel (Land Use 330) are related uses.

Additional Data

Twenty-five studies provided information on occupancy rates at the time the studies were conducted. The average occupancy rate for these studies was approximately 82 percent.

Some properties in this land use provide guest transportation services (e.g., airport shuttle, limousine service, golf course shuttle service) which may have an impact on the overall trip generation rates.

The technical appendices provide supporting information on time-of-day distributions for this land use. The appendices can be accessed through either the ITETripGen web app or the trip generation resource page on the ITE website (https://www.ite.org/technical-resources/topics/trip-and-parking-generation/).

The sites were surveyed in the 1980s, the 1990s, the 2000s, and the 2010s in California, District of Columbia, Florida, Georgia, Indiana, Minnesota, New York, Ontario (CAN), Pennsylvania, South Dakota, Texas, Vermont, Virginia, and Washington.

For all lodging uses, it is important to collect data on occupied rooms as well as total rooms in order to accurately predict trip generation characteristics for the site.

Trip generation at a hotel may be related to the presence of supporting facilities such as convention facilities, restaurants, meeting/banquet space, and retail facilities. Future data submissions should specify the presence of these amenities. Reporting the level of activity at the supporting facilities such as full, empty, partially active, number of people attending a meeting/banquet during observation may also be useful in further analysis of this land use.

Source Numbers

170, 260, 262, 277, 280, 301, 306, 357, 422, 507, 577, 728, 867, 872, 925, 951, 1009, 1021, 1026, 1046

Hotel (310) Vehicle Trip Ends vs: Rooms On a: Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m. Setting/Location: General Urban/Suburban Number of Studies: 28 Avg. Num. of Rooms: 182 Directional Distribution: 56% entering, 44% exiting

Vehicle Trip Generation per Room

Average Rate	Range of Rates	Standard Deviation
0.46	0.20 - 0.84	0.14

Hotel (310) Vehicle Trip Ends vs: Rooms On a: Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m. Setting/Location: General Urban/Suburban Number of Studies: 31 Avg. Num. of Rooms: 186 Directional Distribution: 51% entering, 49% exiting

Vehicle Trip Generation per Room

Average Rate	Range of Rates	Standard Deviation
0.59	0.26 - 1.06	0.22

Land Use: 822 Strip Retail Plaza (<40k)

Description

A strip retail plaza is an integrated group of commercial establishments that is planned, developed, owned, and managed as a unit. Each study site in this land use has less than 40,000 square feet of gross leasable area (GLA). Because a strip retail plaza is open-air, the GLA is the same as the gross floor area of the building.

The 40,000 square feet GFA threshold between strip retail plaza and shopping plaza (Land Use 821) was selected based on an examination of the overall shopping center/plaza database. No shopping plaza with a supermarket as its anchor is smaller than 40,000 square feet GLA.

Shopping center (>150k) (Land use 820), shopping plaza (40-150k) (Land Use 821), and factory outlet center (Land Use 823) are related uses.

Additional Data

The technical appendices provide supporting information on time-of-day distributions for this land use. The appendices can be accessed through either the ITETripGen web app or the trip generation resource page on the ITE website (https://www.ite.org/technical-resources/topics/trip-and-parking-generation/).

The sites were surveyed in the 1980s, the 1990s, the 2000s, and the 2010s in Alberta (CAN), California, Delaware, Florida, New Jersey, Ontario (CAN), South Dakota, Vermont, Washington, and Wisconsin.

Source Numbers

304, 358, 423, 428, 437, 507, 715, 728, 936, 960, 961, 974, 1009

Strip Retail Plaza (<40k) (822)

Vehicle Trip Ends vs: 1000 Sq. Ft. GLA

On a: Weekday,

Peak Hour of Adjacent Street Traffic,

One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 5

Avg. 1000 Sq. Ft. GLA: 18

Directional Distribution: 60% entering, 40% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GLA

Average Rate	Range of Rates	Standard Deviation
2.36	1.60 - 3.73	0.94

Data Plot and Equation

Strip Retail Plaza (<40k) (822)

Vehicle Trip Ends vs: 1000 Sq. Ft. GLA

On a: Weekday,

Peak Hour of Adjacent Street Traffic,

One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 25

Avg. 1000 Sq. Ft. GLA: 21

Directional Distribution: 50% entering, 50% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GLA

Average Rate	Range of Rates	Standard Deviation
6.59	2.81 - 15.20	2.94

Data Plot and Equation

Land Use: 930 Fast Casual Restaurant

Description

A fast casual restaurant is a sit-down restaurant with no (or very limited) wait staff or table service. A customer typically orders off a menu board, pays for food before the food is prepared, and seats themselves. The menu generally contains higher-quality, made-to-order food items with fewer frozen or processed ingredients than at a fast-food restaurant. Most patrons eat their meal within the restaurant, but a significant proportion of the restaurant sales can be carry-out orders. A fast casual restaurant typically serves lunch and dinner; some serve breakfast. A typical duration of stay for an eat-in customer is 40 minutes or less. Fine dining restaurant (Land Use 931), high-turnover (sit-down) restaurant (Land Use 932), and fast-food restaurant without drive-through window (Land Use 933) are related uses.

Additional Data

The fast casual restaurant study sites included in this land use did not have a drive-through window.

The technical appendices provide supporting information on time-of-day distributions for this land use. The appendices can be accessed through either the ITETripGen web app or the trip generation resource page on the ITE website (https://www.ite.org/technical-resources/topics/trip-and-parking-generation/).

The sites were surveyed in the 2010s in Minnesota, South Carolina, Washington, and Wisconsin.

Source Numbers

861, 869, 939, 959, 962, 1048

Fast Casual Restaurant (930)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,

Peak Hour of Adjacent Street Traffic,

One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 1

Avg. 1000 Sq. Ft. GFA: 1

Directional Distribution: 50% entering, 50% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
1.43	1.43 - 1.43	***

Data Plot and Equation

Caution – Small Sample Size

Fast Casual Restaurant (930)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,

Peak Hour of Adjacent Street Traffic,

One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 15

Avg. 1000 Sq. Ft. GFA: 3

Directional Distribution: 55% entering, 45% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
12.55	5.94 - 27.40	5.52

Data Plot and Equation

Land Use: 931 Fine Dining Restaurant

Description

A fine dining restaurant is a full-service eating establishment with a typical duration of stay of at least 1 hour. A fine dining restaurant generally does not serve breakfast; some do not serve lunch; all serve dinner. This type of restaurant often requests and sometimes requires a reservation and is generally not part of a chain. A patron commonly waits to be seated, is served by wait staff, orders from a menu and pays after the meal. Some of the study sites have lounge or bar facilities (serving alcoholic beverages), but meal service is the primary draw to the restaurant. Fast casual restaurant (Land Use 930) and high-turnover (sit-down) restaurant (Land Use 932) are related uses.

Additional Data

If the fine dining restaurant has outdoor seating, its area is not included in the overall gross floor area. For a restaurant that has significant outdoor seating, the number of seats may be more reliable than GFA as an independent variable on which to establish a trip generation rate.

The sites were surveyed in the 1980s, the 1990s, and the 2010s in Alberta (CAN), California, Colorado, Florida, Indiana, Kentucky, New Jersey, and Utah.

Source Numbers

126, 260, 291, 301, 338, 339, 368, 437, 440, 976, 1053

Fine Dining Restaurant (931)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,

Peak Hour of Adjacent Street Traffic,

One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 7

Avg. 1000 Sq. Ft. GFA: 10

Directional Distribution: Not Available

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
0.73	0.25 - 1.60	0.42

Data Plot and Equation

Fine Dining Restaurant (931)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,

Peak Hour of Adjacent Street Traffic,

One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 19

Avg. 1000 Sq. Ft. GFA: 9

Directional Distribution: 67% entering, 33% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
7.80	2.62 - 18.68	4.49

Data Plot and Equation

Description

A brewery tap room is a designated area found in conjunction with a brewery in which customers can try samples of a brewery's products. These rooms are typically located on-site and can be used as a way to sell beer or related products directly to the customer. Depending on its size, a tap room can also be used to house social gatherings. A brewery tap room may also be used to facilitate complimentary tours of the brewery.

Additional Data

For the purposes of this land use, the independent variable "1,000 sq. foot gross floor area" refers to the square footage of the building that houses the tap room.

The technical appendices provide supporting information on time-of-day distributions for this land use. The appendices can be accessed through either the ITETripGen web app or the trip generation resource page on the ITE website (https://www.ite.org/technical-resources/topics/trip-and-parking-generation/).

The sites were surveyed in the 2010s in Florida and Minnesota.

Source Numbers

1047, 1053

ite=

Brewery Tap Room (971)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,

Peak Hour of Adjacent Street Traffic,

One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 2

Avg. 1000 Sq. Ft. GFA: 6

Directional Distribution: 88% entering, 12% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
0.68	0.17 - 1.21	***

Data Plot and Equation

Caution – Small Sample Size

General Urban/Suburban and Rural (Land Uses 800-999) 963
Brewery Tap Room (971)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,

Peak Hour of Adjacent Street Traffic,

One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 2

Avg. 1000 Sq. Ft. GFA: 6

Directional Distribution: 59% entering, 41% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
9.83	4.50 - 15.34	***

Data Plot and Equation

Caution – Small Sample Size

NCHRP 684 Internal Trip Capture Estimation Tool									
Project Name:	Hyde Park Square Development		Organization:	Bayer Becker					
Project Location:	Cincinnati, Ohio	ĺ.	Performed By:	WLW					
Scenario Description:	Full Build	ĺ.	Date:	11/20/24					
Analysis Year:	2027	Ī	Checked By:	EMR					
Analysis Period:	AM Street Peak Hour	Ι	Date:						

	Table 1	-A: Base Vehic	e-Trip Generatio	n Es	stimates (Single-Use S	ite Estimate)		
	Developme	ent Data (<i>For Inf</i>	ormation Only)		Estimated Vehicle-Trips ³			
Land Use	ITE LUCs ¹	Quantity	Units	1	Total	Entering	Exiting	
Office				1	0			
Retail	822	10,600	SF	T	30	18	12	
Restaurant	930/931/971	14,300	SF	T	14	9	5	
Cinema/Entertainment				T	0	0	0	
Residential	221	182	DU	T	68	16	52	
Hotel	310	90	RM	T	38	21	17	
All Other Land Uses ²				T	0	0	0	
					150	64	86	

		Table 2-A:	Mode Split and Veh	nicle	e Occupancy Estimate	s	
		Entering Tri	ips			Exiting Trips	
Land Use	Veh. Occ.4	% Transit	% Non-Motorized	İΓ	Veh. Occ. ⁴	% Transit	% Non-Motorized
Office	1.00	0%	0%	i I	1.00	0%	0%
Retail	1.00	0%	0%	Í	1.00	0%	0%
Restaurant				i I			
Cinema/Entertainment				Í			
Residential	1.00	0%	0%	i I	1.00	0%	0%
Hotel				Í			
All Other Land Uses ²				i I			

Table 3-A: Average Land Use Interchange Distances (Feet Walking Distance)										
		Destination (To)								
Oligin (FIOIII)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel				
Office										
Retail										
Restaurant										
Cinema/Entertainment										
Residential										
Hotel										

Table 4-A: Internal Person-Trip Origin-Destination Matrix*										
	Destination (To)									
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel				
Office		0	0	0	0	0				
Retail	0		2	0	0	0				
Restaurant	0	1		0	0	0				
Cinema/Entertainment	0	0	0		0	0				
Residential	0	1	2	0		0				
Hotel	0	1	1	0	0					

Table 5-A: Computations Summary				Table 6-A: Interna	Table 6-A: Internal Trip Capture Percentages by Land Use			
	Total	Entering	Exiting	Land Use	Entering Trips	Exiting Trips		
All Person-Trips	150	64	86	Office	N/A	N/A		
Internal Capture Percentage	11%	13%	9%	Retail	17%	17%		
				Restaurant	56%	20%		
External Vehicle-Trips⁵	134	56	78	Cinema/Entertainment	N/A	N/A		
External Transit-Trips ⁶	0	0	0	Residential	0%	6%		
External Non-Motorized Trips ⁶	0	0	0	Hotel	0%	12%		

¹ Land Use Codes (LUCs) from <i>Trip Generation Manual</i> , published by the Institute of Transportation Engineers.
² Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator.
³ Enter trips assuming no transit or non-motorized trips (as assumed in ITE <i>Trip Generation Manual</i>).
⁴ Enter vehicle occupancy assumed in Table 1-A vehicle trips. If vehicle occupancy changes for proposed mixed-use project, manual adjustments must be made to Tables 5-A, 9-A (O and D). Enter transit, non-motorized percentages that will result with proposed mixed-use project complete.
⁵ Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-A.

⁶Person-Trips *Indicates computation that has been rounded to the nearest whole number.

Estimation Tool Developed by the Texas A&M Transportation Institute - Version 2013.1

Project Name:	Hyde Park Square Development
Analysis Period:	AM Street Peak Hour

Table 7-A: Conversion of Vehicle-Trip Ends to Person-Trip Ends									
Land Llas	Tab	le 7-A (D): Enter	ring Trips			Table 7-A (O): Exiting Trips	;		
Lanu Use	Veh. Occ.	Vehicle-Trips	Person-Trips*		Veh. Occ.	Vehicle-Trips	Person-Trips*		
Office	1.00	0	0	וך	1.00	0	0		
Retail	1.00	18	18		1.00	12	12		
Restaurant	1.00	9	9		1.00	5	5		
Cinema/Entertainment	1.00	0	0		1.00	0	0		
Residential	1.00	16	16	וך	1.00	52	52		
Hotel	1.00	21	21		1.00	17	17		

Table 8-A (O): Internal Person-Trip Origin-Destination Matrix (Computed at Origin)											
Origin (From)		Destination (To)									
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel					
Office		0	0	0	0	0					
Retail	3		2	0	2	0					
Restaurant	2	1		0	0	0					
Cinema/Entertainment	0	0	0		0	0					
Residential	1	1	10	0		0					
Hotel	13	2	2	0	0						

Table 8-A (D): Internal Person-Trip Origin-Destination Matrix (Computed at Destination)											
Origin (From)		Destination (To)									
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel					
Office		6	2	0	0	0					
Retail	0		5	0	0	0					
Restaurant	0	1		0	1	1					
Cinema/Entertainment	0	0	0		0	0					
Residential	0	3	2	0		0					
Hotel	0	1	1	0	0						

	Table 9-A (D): Internal and External Trips Summary (Entering Trips)									
Destinction Land Line	I	Person-Trip Esti	mates			External Trips by Mode*				
Destination Land Use	Internal	External	Total		Vehicles ¹	Transit ²	Non-Motorized ²			
Office	0	0	0		0	0	0			
Retail	3	15	18		15	0	0			
Restaurant	5	4	9		4	0	0			
Cinema/Entertainment	0	0	0		0	0	0			
Residential	0	16	16		16	0	0			
Hotel	0	21	21		21	0	0			
All Other Land Uses ³	0	0	0		0	0	0			

	Table 9-A (O): Internal and External Trips Summary (Exiting Trips)										
	Person-Trip Estimates				External Trips by Mode*						
Origin Land Use	Internal	External	Total		Vehicles ¹	Transit ²	Non-Motorized ²				
Office	0	0	0		0	0	0				
Retail	2	10	12		10	0	0				
Restaurant	1	4	5		4	0	0				
Cinema/Entertainment	0	0	0		0	0	0				
Residential	3	49	52		49	0	0				
Hotel	2	15	17		15	0	0				
All Other Land Uses ³	0	0	0		0	0	0				

¹Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-A

²Person-Trips

³Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator *Indicates computation that has been rounded to the nearest whole number.

NCHRP 684 Internal Trip Capture Estimation Tool									
Project Name:	Hyde Park Square Development		Organization:	Bayer Becker					
Project Location:	Cincinnati, Ohio		Performed By:	WLW					
Scenario Description:	Full Build		Date:	11/20/24					
Analysis Year:	2027		Checked By:	EMR					
Analysis Period:	PM Street Peak Hour		Date:						

	Table 1-P: Base Vehicle-Trin Generation Estimates (Single-Lise Site Estimate)									
	Developme	ent Data (For Info	ormation Only)		Estimated Vehicle-Trips ³					
Land Use	ITE LUCs ¹	Quantity	Units	11	Total	Entering	Exiting			
Office				1 1	0					
Retail	822	10,600	SF	1 1	81	41	40			
Restaurant	930/931/971	14,300	SF	1 1	161	93	68			
Cinema/Entertainment				1 1	0	0	0			
Residential	221	182	DU	1 1	71	43	28			
Hotel	310	90	RM	1 [39	20	19			
All Other Land Uses ²				1 [0	0	0			
				T	352	197	155			

		Table 2-P:	Mode Split and Vehi	cle Occupancy Est	timates		
Landling		Entering Tri	ps			Exiting Trips	
Lanu Ose	Veh. Occ.4	% Transit	% Non-Motorized	Veh. Occ.	4	% Transit	% Non-Motorized
Office							
Retail							
Restaurant							
Cinema/Entertainment							
Residential							
Hotel							
All Other Land Uses ²							

	Tabla	2 Di Average I	and Llas Interahan	an Distances (Feet Malking	Distance)					
Table 3-P: Average Land Use Interchange Distances (Feet Warking Distance)										
Origin (Fram)				Destination (To)						
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel				
Office										
Retail										
Restaurant										
Cinema/Entertainment										
Residential										
Hotel										

Table 4-P: Internal Person-Trip Origin-Destination Matrix*											
Origin (From)		Destination (To)									
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel					
Office		0	0	0	0	0					
Retail	0		12	0	10	2					
Restaurant	0	21		0	7	5					
Cinema/Entertainment	0	0	0		0	0					
Residential	0	4	6	0		1					
Hotel	0	1	5	0	0						

Table 5-F	P: Computatio	ons Summary		Table 6-P: Interna	Table 6-P: Internal Trip Capture Percentages by Land Use			
	Total	Entering	Exiting	Land Use	Entering Trips	Exiting Trips		
All Person-Trips	352	197	155	Office	N/A	N/A		
Internal Capture Percentage	42%	38%	48%	Retail	63%	60%		
				Restaurant	25%	49%		
External Vehicle-Trips⁵	204	123	81	Cinema/Entertainment	N/A	N/A		
External Transit-Trips ⁶	0	0	0	Residential	40%	39%		
External Non-Motorized Trips ⁶	0	0	0	Hotel	40%	32%		

¹ Land Use Codes (LUCs) from <i>Trip Generation Manual</i> , published by the Institute of Transportation Engineers.
² Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator.
³ Enter trips assuming no transit or non-motorized trips (as assumed in ITE <i>Trip Generation Manual</i>). Enter vernice occupancy assumed in 1 able 1-P venice trips. If venice occupancy changes for proposed mixed-use project, manual adjustments must be made to Tables 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
⁶ Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-P.
⁶ Person-Trips
*Indicates computation that has been rounded to the nearest whole number.
Estimation Tool Developed by the Texas A&M Transportation Institute - Version 2013.1

Project Name:	Hyde Park Square Development
Analysis Period:	PM Street Peak Hour

Table 7-P: Conversion of Vehicle-Trip Ends to Person-Trip Ends											
Land Line	Table	7-P (D): Entering	g Trips		Table 7-P (O): Exiting Trips						
Land Use	Veh. Occ.	Vehicle-Trips	Person-Trips*		Veh. Occ.	Vehicle-Trips	Person-Trips*				
Office	1.00	0	0		1.00	0	0				
Retail	1.00	41	41		1.00	40	40				
Restaurant	1.00	93	93		1.00	68	68				
Cinema/Entertainment	1.00	0	0		1.00	0	0				
Residential	1.00	43	43		1.00	28	28				
Hotel	1.00	20	20		1.00	19	19				

Table 8-P (O): Internal Person-Trip Origin-Destination Matrix (Computed at Origin)											
		Destination (To)									
Oligili (FIOIII)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel					
Office		0	0	0	0	0					
Retail	1		12	2	10	2					
Restaurant	2	28		5	12	5					
Cinema/Entertainment	0	0	0		0	0					
Residential	1	12	6	0		1					
Hotel	0	3	13	0	0						

	Table 8-P (D):	Internal Person	I-Trip Origin-Desti	nation Matrix (Computed at	Destination)	
Origin (From)				Destination (To)		
Oligin (Floin)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel
Office		3	2	0	2	0
Retail	0		27	0	20	3
Restaurant	0	21		0	7	14
Cinema/Entertainment	0	2	3		2	0
Residential	0	4	13	0		2
Hotel	0	1	5	0	0	

	Tal	ble 9-P (D): Inter	nal and External T	rips	Summary (Entering T	rips)	
Destination Land Line	P	erson-Trip Estima	ates			External Trips by Mode*	
Desunation Land Use	Internal	External	Total		Vehicles ¹	Transit ²	Non-Motorized ²
Office	0	0	0		0	0	0
Retail	26	15	41		15	0	0
Restaurant	23	70	93		70	0	0
Cinema/Entertainment	0	0	0		0	0	0
Residential	17	26	43		26	0	0
Hotel	8	12	20		12	0	0
All Other Land Uses ³	0	0	0		0	0	0

	Та	ble 9-P (O): Inter	rnal and External T	rip	s Summary (Exiting Trip	os)	
	P	erson-Trip Estima	ates			External Trips by Mode*	
Origin Land Ose	Internal	External	Total		Vehicles ¹	Transit ²	Non-Motorized ²
Office	0	0	0		0	0	0
Retail	24	16	40		16	0	0
Restaurant	33	35	68		35	0	0
Cinema/Entertainment	0	0	0		0	0	0
Residential	11	17	28		17	0	0
Hotel	6	13	19		13	0	0
All Other Land Uses ³	0	0	0		0	0	0

¹Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-P
²Person-Trips
³Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator
*Indicates computation that has been rounded to the nearest whole number.

APPENDIX C

HCS INTERSECTION LOS CAPACITY ANALYSIS CALCULATIONS &

BACK OF QUEUE LANE LENGTH RESULTS

2024 EXISTING CONDITIONS AM AND PM PEAK HOUR

_															
General Inforn	nation								ntersect	ion Inf	ormatic	on		4 A 4 4 4 4	× 4
Agency		Bayer Becker						[Duration,	h	0.250				
Analyst		WLW		Analys	is Date	e 10/30	/2024	ŀ	Area Typ	e	Other		×		<u>م</u> بر
Jurisdiction		City of Cincinnati		Time F	Period	AM P	eak	F	PHF		0.92			W = E	*
Urban Street		Erie Avenue		Analys	is Yeaı	2024		/	Analysis	Period	1> 7:(00	74		4
Intersection		Edwards Road (SR	561)	File Na	ame	Erie 8	Edwar	ds - 20	24 Build	AM.xus				*	
Project Descrip	tion	Existing Conditions	;										h	4 1 4 Y	r (*
Demand Inform	nation		_		EB			WB	;		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v	/eh/h			20	230	34	40	506	6 265	6	227	35	162	207	40
				//		-	-	-					_	·	
Signal Informa	ation			-		_ 							-		\mathbf{A}
Cycle, s	70.0	Reference Phase	2		B	51	7						€ 2	3	4
Offset, s	0	Reference Point	End	Green	27.0	31.0	0.0	0.0	0.0	0.0			5		
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.4	3.0	0.0	0.0	0.0	0.0					V.
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.6	3.0	0.0	0.0	0.0	0.0		5	6	7	8
Timer Results				EBI		EBT	W/B	1	WBT	NBI		NBT	SBI		SBT
Assigned Phase	e				-	2			6			8			4
Case Number	-					8.0			6.0		-	8.0			6.0
Phase Duration	1, S					33.0			33.0			37.0			37.0
Change Period	ange Period, (Y+R c), s ax Allow Headway (<i>MAH</i>), s					6.0			6.0			6.0			6.0
Max Allow Hea	ange Period, ($Y+Rc$), s ax Allow Headway (<i>MAH</i>), s					0.0			0.0			3.2			3.2
Queue Clearan	ax Allow Headway (<i>MAH</i>), s Jeue Clearance Time (<i>g</i> s), s											9.3			18.0
Green Extensio	ueue Clearance Time (g_s), s reen Extension Time (g_e), s					0.0			0.0			1.5			1.4
Phase Call Pro	ueue Clearance Time (g_s), s reen Extension Time (g_e), s nase Call Probability											1.00			1.00
Max Out Proba	ueue Clearance Time (<i>g</i> _s), s reen Extension Time (<i>g</i> _e), s hase Call Probability ax Out Probability											0.00			0.02
	_														
Movement Gro	Green Extension Time (g s), s Green Extension Time (g e), s Phase Call Probability Max Out Probability Novement Group Results pproach Movement				EB	Р		WB			NB	D		SB	D
Approach Nove	ax Allow Headway (MAH), s ueue Clearance Time ($g \ s$), s reen Extension Time ($g \ e$), s hase Call Probability ax Out Probability ovement Group Results oproach Movement djusted Flow Rate (v), veh/h djusted Saturation Flow Rate (s), veh/h/ln				1 2	<u>к</u>		I C	<u>к</u>	L 2	0	10		1	<u>к</u>
Adjusted Flow	Ase Call Probability Ase Call Probability A Out Probability vement Group Results proach Movement bigned Movement usted Flow Rate (y) yeb/b				2	12	12	0	304	3	0	10	176	4	14
Adjusted Flow I	ation Flo), ven/n w Rate (s) veh/h/l	n	1525		1657	1110	1000	1670		18/10		1112	18/6	
	Time ((σ_{s}) s		0.3		4 4	19	13.1	13.2		0.0		87	6.6	
Cycle Queue C	learance	e Time (<i>g</i> _c), s		13.5		4.4	6.3	13.1	13.2		7.3		16.0	6.6	
Green Ratio (g	ı/C)			0.39		0.39	0.39	0.39	0.39		0.44		0.44	0.44	
Capacity (c), v	/eh/h			647		639	461	733	648		871		480	818	
Volume-to-Cap	acity Ra	itio(X)		0.240		0.240	0.094	0.606	0.608		0.334		0.367	0.328	
Back of Queue	(Q), ft	t/In (95 th percentile)	74		74	23	246	227		131		105	120	
Back of Queue	(Q), ve	eh/In (95 th percenti	le)	3.0		3.0	0.9	9.9	9.1		5.2		4.2	4.8	
Queue Storage	Ratio (RQ) (95 th percent	ile)	0.00		0.00	0.57	0.00	0.00		0.00		1.40	0.00	
Uniform Delay	(d 1), s	/veh		14.4		14.6	16.7	17.2	17.3		12.9		18.2	12.7	
Incremental De	lay (<i>d</i> 2), s/veh		0.9		0.9	0.4	3.7	4.2		1.0		2.2	1.1	
Initial Queue De	elay (d	3), s/veh		0.0		0.0	0.0	0.0	0.0		0.0		0.0	0.0	
Control Delay (d), s/ve	eh		15.3		15.4	17.1	20.9	21.5		13.9		20.3	13.8	
Level of Service	e (LOS)	11.00		B			B	C	C	40.0	В		C	В	
Approach Delay	y, s/veh	/LOS		15.4		В	21.0)	С	13.9)	В	16.4	•	В
Intersection De	iay, s/ve	en / LOS				18	5.0						В		
Multimodal Re	sults				EB			WB			NB			SB	
Pedestrian LOS	S Score	/LOS		1.68		В	1.90)	В	2.25	5	В	2.08	3	В
Bicycle LOS Sc	ore / LC	DS		0.74		А	1.21	1	А	0.97	7	А	1.22	2	А

Copyright © 2024 University of Florida, All Rights Reserved.

HCS™ Streets Version 2024

Generated: 11/14/2024 9:26:42 AM

General Inform	nation							1	ntersect	ion Inf	ormatic	on		4.741	× L.
Agency		Baver Becker							Duration.	h	0.250			46	
Analyst		wiw		Analys	is Date	a 10/30	/2024	A		e	Other		4		4
Jurisdiction		Citv of Cincinnati		Time F	Period	PM Pe	eak	F	PHF		0.92			W E	+ + +
Urban Street		Erie Avenue		Analys	is Yea	r 2024			nalvsis	Period	1> 7:0)0	4		
Intersection		Edwards Road (SR	561)	File Na	ame	Erie &	Edward	ds - 202	24 Ex PN	/l.xus					
Project Descrip	tion	Existing Conditions	; ;	1									n n	41441	- 1
, , ,		5													
Demand Inform	nation				EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			38	594	39	45	213	150	20	260	50	238	317	49
											_				
Signal Informa	tion		-										,		\mathbf{A}
Cycle, s	70.0	Reference Phase	2		3.	51	7					1		3	4
Offset, s	0	Reference Point	End	Green	27.0	31.0	0.0	0.0	0.0	0.0			<u>~</u>		
	No	Simult. Gap E/W	On	Yellow	3.4	3.0	0.0	0.0	0.0	0.0					- V
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.6	3.0	0.0	0.0	0.0	0.0		5	6	7	8
Timer Results				FBI		FBT	WB		WBT	NBI		NBT	SBI		SBT
Assigned Phase	e				-	2		-	6		-	8		-	4
Case Number	-				+	8.0			6.0			8.0			6.0
Phase Duration	I, S					33.0			33.0			37.0			37.0
Change Period	, (Y+R)	c), S				6.0			6.0			6.0			6.0
Max Allow Head	Allow Headway (MAH), s eue Clearance Time (a_s) s					0.0			0.0			3.3			3.3
Queue Clearan	x Allow Headway (MAH), s eue Clearance Time ($g s$), s											11.4			27.0
Green Extensio	eue Clearance Time (<i>g</i> _s), s een Extension Time (<i>g</i> _e), s					0.0			0.0			2.3			1.2
Phase Call Pro	eue Clearance Time ($g s$), s een Extension Time ($g e$), s ase Call Probability											1.00			1.00
Max Out Proba	een Extension Time ($g e$), s ase Call Probability ax Out Probability											0.01			0.81
Movement Gro	oup Res	ults			EB			WB			NB			SB	
Approach Move	reen Extension Time (<i>g</i> e), s nase Call Probability ax Out Probability ovement Group Results oproach Movement assigned Movement				Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	een Extension Time (<i>g</i> e), s ase Call Probability x Out Probability vement Group Results proach Movement signed Movement usted Flow Rate (<i>v</i>), veh/h			5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow I	Rate (<i>v</i>), veh/h		378		352	49	207	188		359		259	398	
Adjusted Satura	ation Flo	ow Rate (<i>s</i>), veh/h/l	n	1798		1692	766	1900	1643		1807		1060	1855	
Queue Service	Time (g	g s), s		0.0		11.3	3.7	5.3	5.5		0.0		15.6	10.6	
Cycle Queue C	learance	e Time (<i>g c</i>), s		10.7		11.3	15.0	5.3	5.5		9.4		25.0	10.6	
Green Ratio (g	/C)			0.39		0.39	0.39	0.39	0.39		0.44		0.44	0.44	
Capacity (c), v	/eh/h	·· · / >		751	_	653	275	733	634		855		430	822	
Volume-to-Capa		$\frac{1}{10} \left(X \right)$	<u>،</u>	0.503		0.539	0.178	0.282	0.296		0.420		0.601	0.484	
Back of Queue	$(Q), \Pi$	hin (95 in percentile) 0)	205	_	199	33	101	94		68		77	7.9	
	Ratio (PO(0.5 th percent)		0.2	_	0.00	0.82	4.0	0.00		0.0		2.55	0.00	
Uniform Delay	(d_1) s	/veh		16.5		16.7	22.5	14.8	14.9		13.5		2.00	13.8	
Incremental De	lav (<i>d</i> 2) s/veh		2.4		32	14	1 0	12		1.5		6.1	2.0	
Initial Queue De	elav (d	3), s/veh		0.0	_	0.0	0.0	0.0	0.0		0.0		0.0	0.0	
Control Delay (d), s/ve	eh		18.9		19.8	23.9	15.8	16.1		15.0		28.2	15.9	
Level of Service	e (LOS)			В		В	С	В	В		В		С	В	
Approach Dela	y, s/veh	/ LOS		19.3		В	16.8	3	В	15.0)	В	20.7		С
Intersection De	lay, s/ve	h / LOS				18	3.5						В		
Multimodal Re	sults				EB			WB			NB			SB	
Pedestrian LOS	S Score	/LOS		1.68		В	1.90)	В	2.25	5	В	2.08		В
Bicycle LOS Sc	ore / LC	05		1.09		A	0.85		A	1.08	5	A	1.57		В

Copyright © 2024 University of Florida, All Rights Reserved.

HCS[™] Streets Version 2024

Generated: 12/21/2024 10:42:33 AM

General Inform	nation								Intersed	tion Inf	ormatio	on		4741	× (,
Agency		Bayer Becker							Duration	, h	0.250			4	
Analvst		WLW		Analys	is Date	e 10/30	2024		Area Tvr)e	Other		4		к. Д
Jurisdiction		City of Cincinnati		Time F	Period	AM Pe	eak		PHF		0.92			WHE	*
Urban Street		Erie Avenue		Analys	is Yea	r 2024		_	Analysis	Period	1> 7:0	00	4 11		1
Intersection		Michigan Avenue		File Na	ame	Erie &	Michia	an - 2	024 Build	AM.xu	 }				
Project Descrip	tion	Existing Conditions	\$	1										141411	- 17
, ,															
Demand Inform	nation				EB			W	′B		NB			SB	
Approach Move	ement			L	Т	R	L		Г R	L	Т	R	L	Т	R
Demand (v), v	/eh/h			10	399	19	18	77	79 25	7	12	12	24	10	24
				I		-		1		_	_	- 718			
Signal Informa		Defenses Dhase	0			<u>≓</u> 242							,		ሐ
Cycle, s	70.0	Reference Phase	2	-	5 .	51						1	\$ 2	3	4
Offset, s	0		Ena	Green	37.0	22.0	0.0	0.0	0.0	0.0			<u>~</u>		
Uncoordinated	NO	Simult. Gap E/W	On	Yellow	3.0	3.0	0.0	0.0	0.0	0.0	_		Y		Ŷ
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.0	3.0	0.0	0.0	J 0.0	0.0		5	6	7	8
Timer Results			_	FBI		FBT	WB	1	WBT	NB		NBT	SB		SBT
Assigned Phas	е					2			6			8			4
Case Number						8.0		-	8.0			8.0			8.0
Phase Duration	ı, s					42.0			42.0			28.0			28.0
Change Period	, (Y+R)	c), S				5.0			5.0			6.0			6.0
Max Allow Hea	ax Allow Headway (<i>MAH</i>), s					0.0			0.0			3.2			3.2
Queue Clearan	ax Allow Headway (<i>MAH</i>), s ueue Clearance Time (<i>g</i> s), s											2.9			3.8
Green Extensio	n Time	(ge),s				0.0			0.0			0.1			0.1
Phase Call Pro	ueue Clearance Time (<i>g</i> _s), s reen Extension Time (<i>g</i> _e), s nase Call Probability											1.00			1.00
Max Out Proba	reen Extension Time ($g \in $), s hase Call Probability lax Out Probability											0.00			0.00
Movement Gro	un Res	sults	_		FB			\//F	2		NB			SB	_
Approach Move	ement		_		Т	R		T	R		Т	R	1	Т	R
Assigned Move	reen Extension Time ($g e$), s hase Call Probability lax Out Probability lovement Group Results pproach Movement ssigned Movement djusted Flow Rate (v), veh/h				2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow I	Rate (v), veh/h		243		222	467		426	-	34	10	-	63	
Adjusted Satura	ation Flo	ow Rate (s), veh/h/l	n	1848		1701	1869		1709		1687			1585	
Queue Service	Time (d	a s). S		0.0		5.0	0.0	_	11.0		0.0			0.0	
Cycle Queue C	learance	e Time (g c), s		4.8		5.0	10.8		11.0		0.9			1.8	
Green Ratio (g	ı/C)			0.53	_	0.53	0.53		0.53		0.31			0.31	
Capacity (c), v	/eh/h			1031		899	1041		904		593			571	
Volume-to-Cap	acity Ra	itio(X)		0.236		0.247	0.449		0.472		0.057			0.110	
Back of Queue	(Q), ft	t/In (95 th percentile	e)	82		77	187		174		17			33	
Back of Queue	(Q), ve	eh/In (95 th percenti	ile)	3.3		3.1	7.5		7.0		0.7			1.3	
Queue Storage	Ratio (RQ) (95 th percent	tile)	0.00		0.00	0.00		0.00		0.00			0.00	
Uniform Delay	(d 1), s/	/veh		8.9		8.9	10.3		10.4		16.8			17.1	
Incremental De	lay (<i>d</i> 2), s/veh		0.5		0.7	1.4		1.8		0.2			0.4	
Initial Queue D	nitial Queue Delay (d 3), s/veh			0.0		0.0	0.0		0.0		0.0			0.0	
Control Delay (Control Delay (<i>d</i>), s/veh					9.6	11.7		12.1		17.0			17.5	
Level of Service	evel of Service (LOS)					A	В		В		B			B	
Approach Dela	pproach Delay, s/veh / LOS					А	11.9		В	17.	0	В	17.5	5	В
Intersection De	lay, s/ve	eh / LOS				11	.5						B		
Multimodal Re	sults				EB			WF	3		NB			SB	
Pedestrian LOS	S Score	/LOS		1.65		В	1.65	;	В	2.1)	В	2.10)	В
Bicycle LOS Sc	core / LC)S		0.87		А	1.22	2	A	0.5	4	А	0.59	9	А
,															

Copyright © 2024 University of Florida, All Rights Reserved.

HCS[™] Streets Version 2024

Generated: 11/14/2024 9:28:55 AM

													_		
General Inform	nation								Intersect	ion Inf	ormatic	on		*****	× 4
Agency		Bayer Becker							Duration,	h	0.250			Ť	
Analyst		WLW		Analys	is Dat	e 10/30	/2024		Area Typ	e	Other		4		A 2-
Jurisdiction		City of Cincinnati		Time F	Period	PM Pe	eak		PHF		0.92		*	W = E	*
Urban Street		Erie Avenue		Analys	is Yea	r 2024			Analysis	Period	1> 7:0	00	14		7 4
Intersection		Michigan Avenue		File Na	ame	Erie &	Michiga	an - 2	024 Build	PM.xus	5			*	
Project Descrip	tion	Existing Conditions	5										1	4 1 4 Y 1	۲ (*
Demand Inform	nation				EB			W	B	T	NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L L	T	R	L	Т	R
Demand (v), v	/eh/h			18	856	12	4	36	1 15	6	14	16	42	11	33
Signal Informa	ation												_		
Cycle, s	70.0	Reference Phase	2		H	S.	7						€,	3	
Offset, s	0	Reference Point	End	Green	37.0	22.0	0.0	0.0	0.0	0.0		<u> </u>	3 - K		
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.0	3.0	0.0	0.0	0.0	0.0			2		×12
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.0	3.0	0.0	0.0	0.0	0.0		5	6	7	8
			_	501	I	EDT			MOT		_		0.00		0.D.T.
Timer Results				EBL	-	EBI	WB		WBT	NBI		NBI	SB		SBI
Assigned Phase	e				_	2		-	6			8		_	4
Case Number					_	8.0	<u> </u>		8.0			8.U 29.0	<u> </u>		8.U 29.0
Change Period	ange Period, ($Y+R_c$), s					42.0 5.0		+	42.0			20.0 6.0	<u> </u>		20.0
Max Allow Hear	ange Period,(Y+ <i>R</i> _c), s x Allow Headway(<i>MAH</i>), s					0.0		-	0.0		-	3.2		_	3.2
	x Allow Headway (<i>MAH</i>), s eue Clearance Time (<i>g</i> _s), s				-	0.0		+	0.0		+	3.1	<u> </u>		4.8
Green Extensio	n Time	(q_{θ}) s	_			0.0		-	0.0			0.1			0.2
Phase Call Pro	bability	(90),0				0.0		-	0.0			1 00	<u> </u>		1.00
Max Out Proba	reen Extension Time ($g \in$), s nase Call Probability ax Out Probability							-				0.00			0.00
-															
Movement Gro	oup Res	ults			EB			WE	;		NB			SB	
Approach Move	reen Extension Time (<i>g</i> e), s hase Call Probability ax Out Probability ovement Group Results oproach Movement ssigned Movement				Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment	<u> </u>		5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow I	Rate (v), veh/h		503		461	217		196		39			93	
Adjusted Satura		w Rate (s), veh/h/l	n	1873		1/20	1885		1/04		1/00		<u> </u>	1551	
Queue Service	lime (g	js), S a Time (a c) s		0.0		12.1	0.0		4.3		0.0		<u> </u>	0.7	
Green Ratio (o		e nine (g c), s		0.53		0.53	0.53		0.53		0.31			0.31	
Capacity (c), y	/eh/h			1044		909	1049		900		594		<u> </u>	564	
Volume-to-Cap	acity Ra	tio(X)	_	0.482		0.506	0.207		0.218		0.066			0.166	
Back of Queue	(Q), ft	/In (95 th percentile)	203		193	72		67		20			50	
Back of Queue	(Q), Ve	eh/In (95 th percenti	, le)	8.1	_	7.7	2.9		2.7		0.8			2.0	
Queue Storage	Ratio (RQ) (95 th percent	ile)	0.00		0.00	0.00		0.00		0.00			0.00	
Uniform Delay	(d1), s	/veh		10.6		10.6	8.8		8.8		16.8			17.4	
Incremental De	lay (<i>d</i> 2), s/veh		1.6		2.0	0.4		0.6		0.2			0.6	
Initial Queue De	ncremental Delay (<i>d</i> ₂), s/veh nitial Queue Delay (<i>d</i> ₃), s/veh			0.0		0.0	0.0		0.0		0.0			0.0	
Control Delay (d), s/ve	eh		12.2		12.6	9.2		9.3		17.0			18.0	
Level of Service	e (LOS)			В		В	Α		A		В			В	
Approach Delay	pproach Delay, s/veh / LOS					В	9.3		А	17.0)	В	18.0)	В
Intersection De	lay, s/ve	h / LOS				12	2.0						B		
Multimodal Ba	sulte				ED						NP			CD	
Pedestrian LOS	Score	/1.05		1 65		B	1 65		B	2 10		B	2 10		B
Ricycle I OS So	core / I C)S		1.00		Δ	0.83		Δ	0.54	,	Δ	0.6/	, L	Δ
				1.20		A	0.00	,	Λ	0.00	,	Π	0.02		~

Copyright © 2024 University of Florida, All Rights Reserved.

HCS™ Streets Version 2024

Generated: 11/14/2024 9:38:29 AM

									_						
General Inform	nation								Intersec	tion Inf	ormatio	on		4444	× L.
Agency		Bayer Becker		1		4			Duration	, h	0.250			4.8	
Analyst		WLW		Analys	sis Date	Dec 1	0, 2024		Area Typ	e	Other		<u>4</u> →		A 2-
Jurisdiction		City of Cincinnati		Time F	Period	AM Pe	eak		PHF		0.92			W = E	م
Urban Street		Edwards Road (SR	561)	Analys	sis Year	2024			Analysis	Period	1> 7:0	00	7 4		7
Intersection		Observatory Avenu	е	File Na	ame	Edwa	rds & O	bserva	atory - 20	24 Ex A	M.xus			11	
Project Descrip	tion	Existing Conditions	5										h	414Y1	۲ (*
									_						
Demand Inform	nation			<u> </u>	EB		- · ·	W	B	<u> </u>	NB		<u> </u>	SB	
Approach Move	ement			L		R	L	1	R	L		R	L		R
Demand (v), v	eh/h			19	339	23	30	52	27 186	35	92	48	162	58	68
Signal Informa	tion					"LJIL	L.III.	T							1
Cycle s	70.0	Reference Phase	2	1	2			_8					2		Φ
Offset s	0	Reference Point	- End		.		<u>_</u>					1	Y 2	3	4
Uncoordinated	No	Simult Gap F/W	On	Green	31.0	6.0	18.0	0.0	$\frac{0.0}{0.0}$	0.0	_		↔	ιI	-+-
Force Mode	Fixed	Simult Gap N/S	On	Red	1.8	2.0	1.8	0.0	0.0	0.0	_	5	6	7	Y
	Tixted	onnan: oap n/o	on	<u></u>	1.10	12.0			1010	10.0					
Timer Results				EBL	_	EBT	WB	L	WBT	NB	_	NBT	SBL	_	SBT
Assigned Phase	e					2			6			8	7		4
Case Number						6.0			6.0			7.3	1.0		4.0
Phase Duration	i, s					36.0			36.0			23.0	11.0)	34.0
Change Period	, (Y+R a	c), S				5.0			5.0			5.0	5.0		5.0
Max Allow Head	x Allow Headway (<i>MAH</i>), s					0.0			0.0			3.2	3.1		3.2
Queue Clearan	ax Allow Headway (<i>MAH</i>), s ueue Clearance Time (<i>g</i> s), s											6.1	6.7		5.5
Green Extensio	ueue Clearance Time (<i>g</i> _s), s reen Extension Time (<i>g</i> _e), s					0.0			0.0			0.5	0.0		0.6
Phase Call Pro	bability											1.00	1.00)	1.00
Max Out Proba	bility											0.00	1.00)	0.00
Movement Gro	oup Res	ults			FB			WF	3		NB	_		SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	T	R
Assigned Move	nase Call Probability ax Out Probability ovement Group Results oproach Movement ssigned Movement				2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow I	Rate (v), veh/h		21	393		33	775	;		138	52	176	137	
Adjusted Satura	ation Flo	w Rate (<i>s</i>), veh/h/l	In	707	1879		1006	181	5		1735	1610	1810	1732	
Queue Service	Time (g	gs), s		1.9	10.3		1.7	29.1	1		0.0	1.7	4.7	3.5	
Cycle Queue C	learance	e Time (<i>g c</i>), s		31.0	10.3		12.0	29.1	1		4.1	1.7	4.7	3.5	
Green Ratio (g	/C)			0.44	0.44		0.44	0.44	1		0.26	0.26	0.37	0.41	
Capacity (c), v	/eh/h			122	832		400	804			512	414	520	717	
Volume-to-Cap	acity Ra	tio(X)		0.169	0.473		0.082	0.96	4		0.270	0.126	0.339	0.191	
Back of Queue	(Q), ft	/In (95 th percentile	e)	20	196		18	568	;		86	31	91	61	
Back of Queue	(Q), ve	eh/In (95 th percenti	ile)	0.8	7.8		0.7	22.7	7		3.4	1.2	3.6	2.4	
Queue Storage	Ratio (RQ) (95 th percent	tile)	0.14	0.00		0.20	0.00)		0.00	0.42	0.91	0.00	
Uniform Delay	(d 1), s/	/veh		34.1	13.7		18.0	19.0)		20.8	20.0	15.6	13.0	
Incremental De	lay (<i>d</i> 2), s/veh		3.0	1.9		0.4	24.2	2		1.3	0.6	1.8	0.6	
Initial Queue De	ncremental Delay (<i>d</i> ₂), s/veh nitial Queue Delay (<i>d</i> ₃), s/veh				0.0		0.0	0.0			0.0	0.0	0.0	0.0	
Control Delay (itial Queue Delay (d ȝ), s/veh ontrol Delay (d), s/veh				15.7		18.4	43.1	1		22.1	20.6	17.4	13.6	
Level of Service	ontrol Delay (d), s/ven evel of Service (LOS)				В		В	D			С	С	В	В	
Approach Dela	oproach Delay, s/veh / LOS				/	В	42.1	1	D	21.7	7	С	15.7	7	В
Intersection De	lay, s/ve	h / LOS				29	9.0						С		
Multimodal Re	sults				EB			WE	3		NB			SB	_
Pedestrian LOS	S Score	/LOS		1.89)	В	1.89)	B	1.92	2	В	1.90)	В
Bicycle LOS Sc	ore / LC	05		1.17		A	1.82	2	В	0.80)	A	1.00)	A

Copyright © 2025 University of Florida, All Rights Reserved.

HCS™ Streets Version 2024

Generated: 1/8/2025 11:03:14 AM

General Informa	ation								ntersect	ion Inf	ormatic	on		↓↓☆↓↓ ↓	× L.
Agency		Bayer Becker						[Duration,	h	0.250			4.8	
Analyst		WLW		Analys	sis Dat	e Dec 1	0, 2024	ļ	Area Typ	е	Other		<u>⊅</u>		
Jurisdiction		City of Cincinnati		Time F	Period	PM P	eak	F	PHF		0.92			W = E	
Urban Street		Edwards Road (SR	561)	Analys	sis Yea	ar 2024		ŀ	Analysis	Period	1> 7:0	00	14		14
Intersection		Observatory Avenue	9	File Na	ame	Edwa	rds & O	bservat	tory - 202	24 Ex P	M.xus			11	
Project Description	on	Existing Conditions											ľ	41441	× (*
							_						-		
Demand Informa	ation				EB			WB	; 		NB			SB	
Approach Movem	nent			L	Т	R	L	Т	R	L	T	R	L	Т	R
Demand (<i>v</i>), vel	h/h			28	610) 15	25	288	8 182	21	78	73	295	83	43
Signal Informati	ion		_					_							
	70.0	Reference Phase	2				* +*						<u> </u>		Φ
Offset s	0	Reference Point	End			20	î	<u> </u>				1	Y 2	3	4
Uncoordinated	No	Simult Gan E/W	On	Green	26.0	11.0	18.0	0.0	0.0	0.0	_		↔_	ιI	-+-
Force Mode	Fixed	Simult Gap N/S	On	Red	3.2 1.8	2.0	3.Z	0.0	0.0	0.0	_	5	6	7	Y
	INCO		OII	Ttou	1.0	2.0	1.0	0.0	0.0	0.0		-			
Timer Results				EBI	_	EBT	WB	L	WBT	NB	_	NBT	SBL	_	SBT
Assigned Phase						2			6			8	7		4
Case Number						6.0			6.0			7.3	1.0		4.0
Phase Duration,	s					31.0			31.0			23.0	16.0) :	39.0
Change Period, ((Y+R a	:), s				5.0			5.0			5.0	5.0		5.0
Max Allow Headv	IX Allow Headway (<i>MAH</i>), s					0.0			0.0			3.2	3.1		3.2
Queue Clearance	ueue Clearance Time (g s), s											5.1	10.4		5.0
Green Extension	ueue Clearance Time (<i>g</i> _s), s reen Extension Time (<i>g</i> _e), s					0.0			0.0			0.5	0.0		0.6
Phase Call Proba	ability											1.00	1.00)	1.00
Max Out Probabi	ility											0.00	1.00)	0.00
Movement Grou	in Boo	ulto			EP			\//D	_		ND			CD.	
Approach Mover	nont	uits				R	1	Т	R	1		R	1	Т	R
Assigned Movem	hent			5	2	12	1	6	16	3	8	18	7	1	14
Adjusted Flow Ra	ate (v) veh/h		30	679	12	27	511		5	108	79	321	137	17
Adjusted Saturati	ion Flo	w Rate (s) veh/h/l	n	903	1892	,	773	1776	$\left \right $		1786	1610	1810	1790	
Queue Service Ti	ïme (o	(\mathbf{r}_{s}) s		22	24.7		13	17.8			0.0	27	84	3.0	
Cvcle Queue Cle	earance	e Time (<i>a</i> _c), s		19.9	24.7		26.0	17.8			3.1	2.7	8.4	3.0	
Green Ratio (g/0	C)			0.37	0.37		0.37	0.37			0.26	0.26	0.44	0.49	
Capacity (c), ve	eh/h			209	703		118	660			521	414	671	869	
Volume-to-Capac	city Ra	tio(X)		0.146	0.967	7	0.231	0.774			0.206	0.192	0.478	0.158	
Back of Queue (Q), ft	/In (95 th percentile)	24	537		27	324			65	49	155	50	
Back of Queue (Q), ve	h/ln (95 th percenti	, le)	1.0	21.5		1.1	13.0			2.6	1.9	6.2	2.0	
Queue Storage R	Ratio (RQ) (95 th percent	ile)	0.17	0.00		0.30	0.00			0.00	0.65	1.55	0.00	
Uniform Delay (a	d 1), s/	veh		28.2	21.6		34.6	19.4			20.5	20.3	13.5	10.0	
Incremental Dela	ay (d 2), s/veh		1.5	26.7		4.5	8.6			0.9	1.0	2.4	0.4	
ncremental Delay (d ₂), s/veh nitial Queue Delay (d ȝ), s/veh				0.0	0.0		0.0	0.0			0.0	0.0	0.0	0.0	
Control Delay (d	/), s/ve	h		29.7	48.3		39.2	28.0			21.4	21.3	15.9	10.4	
Level of Service (evel of Service (LOS)				D		D	С			С	С	В	В	
Approach Delay,	pproach Delay, s/veh / LOS				5	D	28.6	3	С	21.4	1	С	14.2	2	В
Intersection Dela	iy, s/ve	h / LOS				3	1.5						С		
Multimodal Res	ults				EB			WB			NB			SB	
Pedestrian LOS S	Score /	LOS		1.90		В	1.90)	В	1.92	2	В	1.89)	В
Bicycle LOS Sco	ore / LO	S		1.66	6	В	1.38	3	A	0.80)	A	1.24		A

Copyright © 2024 University of Florida, All Rights Reserved.

HCS™ Streets Version 2024

Generated: 12/25/2024 2:25:16 PM

2027 BUILD CONDITIONS AM AND PM PEAK HOUR

ALTERNATIVE 1

_								_							
General Inforn	nation	700						1	ntersect	ion Inf	ormatic	on		****	the la
Agency		Bayer Becker							Ouration,	h	0.250			45	
Analyst		WLW		Analys	is Date	e 10/30	/2024	A	Area Typ	е	Other		4		<u>م</u>
Jurisdiction		City of Cincinnati		Time F	Period	AM P	eak	F	PHF		0.92			W	+ −
Urban Street		Erie Avenue		Analys	is Yea	2027		A	Analysis	Period	1> 7:0	00	14		*
Intersection		Edwards Road (SR	561)	File Na	ame	Erie 8	Edward	ds - 202	27 B AM	Alt 1.xı	JS			11	
Project Descrip	tion	Future Traffic, Modi	fied Ge	ometry -	Alt 1								h	41441	۴ (*
Demons de las ferm														00	
Demand Inform	nation				EB		<u> </u>	VVB					<u> </u>		
Approach wove	ement			L	1	R	L	500	R 005		044	R 25	L	015	R 40
Demand (V), V	en/n			20	230	39	40	506	265	21	241	35	162	215	40
Signal Informa	ation		_			LUL.									
Cycle, s	70.0	Reference Phase	2		4							_	4	1	Φ
Offset, s	0	Reference Point	End	Croon	25.0	22.0		0.0		0.0		1	Y 2	3	4
Uncoordinated	No	Simult. Gap E/W	On	Yellow	35.0	3.0	0.0	0.0	0.0	0.0	_		\rightarrow		sta
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.6	3.0	0.0	0.0	0.0	0.0		5	6	7	Y
Timer Results				EBL	-	EBT	WB	L	WBT	NBI	-	NBT	SBI	-	SBT
Assigned Phase	e					2			6			8			4
Case Number						8.0			6.0			7.0			6.0
Phase Duration	n, s					41.0			41.0			29.0			29.0
Change Period	ange Period, (Y+R c), s x Allow Headway (MAH), s					6.0			6.0			6.0			6.0
Max Allow Hea	ange Penou, (<i>Y+R c</i>), s ax Allow Headway (<i>MAH</i>), s leue Clearance Time (<i>g</i> s), s					0.0			0.0			3.2			3.2
Queue Clearan	ax Allow Headway (MAH), s ueue Clearance Time ($g s$), s											10.3			20.4
Green Extensio	Level Clearance Time ($g \circ$), s reen Extension Time ($g \circ$), s					0.0			0.0			1.5			0.6
Phase Call Pro	ax Allow Headway (<i>MAH</i>), s ueue Clearance Time (<i>g</i> _s), s reen Extension Time (<i>g</i> _e), s nase Call Probability ax Out Probability											1.00			1.00
Max Out Proba	ueue Clearance Time ($g s$), s reen Extension Time ($g e$), s hase Call Probability ax Out Probability											0.02			1.00
Movement Gro	oup Res	ults			EB			WB			NB			SB	
Approach Move	Rueue Clearance Time ($g \ge$), s areen Extension Time ($g \ge$), s hase Call Probability lax Out Probability Iovement Group Results pproach Movement				Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	eue Clearance Time (g_s), s een Extension Time (g_e), s ase Call Probability x Out Probability vement Group Results proach Movement signed Movement usted Flow Rate (v), veh/h usted Saturation Flow Rate (s), veh/h/ln				2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow I	Rate (v), veh/h		161		153	43	444	394		285	38	176	277	1
Adjusted Satura	ation Flo	w Rate (<i>s</i>), veh/h/l	n	1648		1647	1104	1900	1679		1852	1610	1135	1848	
Queue Service	Time (g	y s), S		0.0		3.6	1.6	10.7	10.7		0.0	1.1	10.2	8.3	
Cycle Queue C	learance	e Time (<i>g c</i>), s		3.2		3.6	5.2	10.7	10.7		8.3	1.1	18.4	8.3	
Green Ratio (g	ı∕C)			0.50		0.50	0.50	0.50	0.50		0.33	0.33	0.33	0.33	
Capacity (c), v	/eh/h			882		824	598	950	839		664	529	341	607	
Volume-to-Cap	acity Ra	tio (<i>X</i>)		0.182		0.186	0.073	0.468	0.469		0.429	0.072	0.516	0.457	
Back of Queue	(Q), ft	/In (95 th percentile)	57		55	17	191	172		167	19	138	165	
Back of Queue	(Q), ve	eh/In (95 th percenti	le)	2.3		2.2	0.7	7.7	6.9		6.7	0.8	5.5	6.6	
Queue Storage	Ratio (RQ) (95 th percent	ile)	0.00		0.00	0.43	0.00	0.00		0.00	0.00	1.84	0.00	
Uniform Delay	(d 1), s/	/veh		9.6		9.6	11.1	11.4	11.4		18.6	16.2	25.8	18.6	
Incremental De	lay (<i>d</i> 2), s/veh		0.5		0.5	0.2	1.7	1.9		2.0	0.3	5.5	2.5	
Initial Queue D	elay (d	3), s/veh		0.0		0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	
Control Delay (d), s/ve	eh		10.0		10.1	11.3	13.1	13.3		20.6	16.4	31.3	21.0	
Level of Service	e (LOS)			В		<u> </u>	B	В	В		C	В	C	C	
Approach Dela	y, s/veh	LOS		10.1		В	13.1		В	20.1		С	25.0		С
Intersection De	lay, s/ve	n / LOS				16	<u>5.5</u>						В		
Multimodal Po	sulte				ER			\//R			NR			SR	
Pedestrian I OS	Score	/1.05		1 89		B	1.89		В	2.27	7	B	2 10		B
Bicycle I OS Sc	core / I C)S		0.75		Δ	1.00	,	Δ	1.03	,	Δ	1.10		Δ
				0.13			1.2		~	1.02	- 1		1.24		

 $Copyright @ {\tt 2025} \ University \ of \ Florida, \ All \ Rights \ Reserved.$

HCS™ Streets Version 2024

Generated: 1/27/2025 3:01:49 PM

_								_							
General Inform	nation								Intersect	ion Inf	ormatio	on	×	* 7 * †	te l <u>e</u>
Agency		Bayer Becker						[Duration,	h	0.250			45	
Analyst		WLW		Analys	is Date	e 10/30	/2024	/	Area Typ	е	Other		4		<u>م</u> الح
Jurisdiction		City of Cincinnati		Time F	Period	PM P	eak	[PHF		0.92			₩ŢE	+ _
Urban Street		Erie Avenue		Analys	is Yea	r 2027		/	Analysis	Period	1> 7:(00	14		1 4
Intersection		Edwards Road (SR	561)	File Na	ame	Erie 8	Edware	ds - 20	27 B PM	-Alt 1.xı	JS			11	
Project Descrip	tion	Future Traffic, Ex. C	Geometr	y - Alt 1									ľ	4 1 4 1	1
Domond Inform	notion)		ND			CD.	
Approach Move	mont					D) 				<u> </u>		D
Approach wove				L 20	F04		15 15	010	K 150	L 07	071	K	L 220	241	K 40
Demand (V), V	en/n			30	594	05	40	213	5 150	21	271	50	230	341	49
Signal Informa	ation														
Cycle, s	70.0	Reference Phase	2		4	-	_					_	4		Φ
Offset, s	0	Reference Point	End	Croon	20.0	20.0		0.0		0.0		1	Y 2	3	4
Uncoordinated	No	Simult. Gap E/W	On	Yellow	28.0	30.0	0.0	0.0	0.0	0.0	-		\rightarrow		sta
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.6	3.0	0.0	0.0	0.0	0.0		5	6	7	Y
Timer Results				EBL	-	EBT	WB	L	WBT	NBI	-	NBT	SBI	-	SBT
Assigned Phase	е					2			6			8			4
Case Number						8.0			6.0			7.0			6.0
Phase Duration	ı, s					34.0			34.0			36.0			36.0
Change Period	ange Period, (Y+R c), s x Allow Headway (MAH), s					6.0			6.0			6.0			6.0
Max Allow Head	Ex Allow Headway (MAH), s Heue Clearance Time ($g s$), s					0.0			0.0			3.3			3.3
Queue Clearan	ax Allow Headway (MAH), s ueue Clearance Time ($g s$), s											10.2			25.0
Green Extensio	ueue Clearance Time ($g s$), s reen Extension Time ($g e$), s					0.0			0.0			2.4			1.4
Phase Call Pro	ax Allow Headway (<i>MAH</i>), s leue Clearance Time (g_s), s een Extension Time (g_e), s hase Call Probability ax Out Probability											1.00			1.00
Max Out Proba	ueue Clearance Time (<i>g</i> s), s reen Extension Time (<i>g</i> e), s nase Call Probability ax Out Probability											0.01			0.61
Movement Gro	oup Res	ults			EB			WB			NB			SB	
Approach Move	ueue Clearance Time ($g \le$), s reen Extension Time ($g \in$), s hase Call Probability lax Out Probability Iovement Group Results pproach Movement ssigned Movement				Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	eue Clearance Time (g_s), s een Extension Time (g_e), s ase Call Probability ex Out Probability evement Group Results proach Movement signed Movement justed Flow Rate (v), veh/h justed Saturation Flow Rate (s), veh/h/ln				2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow I	Rate (v), veh/h		395		363	49	207	188		324	54	259	424	
Adjusted Satura	ation Flo	w Rate (<i>s</i>), veh/h/l	n	1803		1670	747	1900	1643		1823	1610	1102	1858	
Queue Service	Time (g	g s), s		0.0		11.6	3.8	5.1	5.4		0.0	1.4	14.8	11.8	
Cycle Queue C	learance	e Time (<i>g c</i>), s		11.0	_	11.6	15.4	5.1	5.4		8.2	1.4	23.0	11.8	
Green Ratio (g	ı/C)			0.40		0.40	0.40	0.40	0.40		0.43	0.43	0.43	0.43	
Capacity (c), v	/eh/h			778		668	277	760	657		838	690	446	796	
Volume-to-Cap	acity Ra	tio(X)		0.508		0.543	0.176	0.272	0.286		0.387	0.079	0.580	0.532	
Back of Queue	(Q), ft	/In(95 th percentile)	209	_	201	33	98	90		155	22	187	215	
Back of Queue	(Q), ve	eh/In (95 th percenti	le)	8.3		8.0	1.3	3.9	3.6		6.2	0.9	7.5	8.6	
Queue Storage	Ratio (RQ) (95 th percent	ile)	0.00		0.00	0.81	0.00	0.00		0.00	0.00	2.49	0.00	
Uniform Delay	(d 1), si	/veh		15.9		16.1	22.0	14.1	14.2		13.8	11.8	21.7	14.8	
Incremental De	lay (<i>d</i> 2), s/veh		2.4		3.1	1.4	0.9	1.1		1.3	0.2	5.4	2.5	
Initial Queue De	nitial Queue Delay (d 3), s/veh			0.0		0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	
Control Delay (d), s/ve	eh		18.3		19.2	23.4	15.0	15.3		15.1	12.1	27.1	17.3	
Level of Service	evel of Service (LOS)					B	C	В	В		В	В	С	B	
Approach Delay	pproach Delay, s/veh / LOS					В	16.1		В	14.7		В	21.1		C
Intersection De	iay, s/ve	en / LOS				18	3.2				_		R R		
Multimodal Po	sulte				ER			\//R			NR			SR	
Pedestrian I OS	Score	/1.05		1 00		B	1 00		B	2.25		B	2 00	3	B
Bicycle LOS Sc	core / I C)S		1 11		Δ	0.84	, ;	Δ	1 11	,	Δ	1.61		B
210,010 200 00				1.11			0.00		N	1.11			1.0		5

Copyright © 2025 University of Florida, All Rights Reserved.

HCS™ Streets Version 2024

Generated: 1/27/2025 1:24:47 PM

									_						
General Inforn	nation								Intersec	tion Inf	ormatio	on		*****	- L <u>.</u>
Agency		Bayer Becker							Duration	h	0.250			Ť	
Analyst		WLW		Analys	is Date	e 10/30	/2024		Area Typ	е	Other		4		
Jurisdiction		City of Cincinnati		Time F	Period	AM Pe	eak		PHF		0.92			w‡e 8	*
Urban Street		Erie Avenue		Analys	is Yea	· 2027			Analysis	Period	1> 7:(00	14		*
Intersection		Michigan Avenue		File Na	ame	Erie &	Michiga	an - 2	027 B AM	-Alt 1-3	.xus			*	
Project Descrip	tion	Future Traffic, Ex. O	Geometr	У									1	4 1 4 1 1	* (*
				_			_		-						
Demand Inform	nation				EB		<u> </u>	W	B	<u> </u>	NB		<u> </u>	SB	
Approach Move	ement			L	T	R	L	Т	R		T	R	L	T	R
Demand (v), v	/eh/h			10	399	19	34	17	9 25	7	13	24	24	11	24
Signal Informa	ation		_	[UI.		T.							
Cvcle, s	70.0	Reference Phase	2		4		_					-	<u> </u>	l l	Φ
Offset, s	0	Reference Point	End									1	Y 2	3	4
Uncoordinated	No	Simult. Gap E/W	On	Vellow	37.0	22.0	0.0	0.0		0.0	_		-€		r†3
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.0	3.0	0.0	0.0	0.0	0.0		5	6	7	Y
				II											•
Timer Results				EBL		EBT	WB	L	WBT	NB	L	NBT	SB		SBT
Assigned Phas	е					2			6			8			4
Case Number						8.0			8.0			8.0			8.0
Phase Duration	1, S					42.0			42.0			28.0		:	28.0
Change Period	nange Period, (Y+R c), s ax Allow Headway (MAH), s					5.0			5.0			6.0			6.0
Max Allow Hea	aange Period, (Y+R c), s ax Allow Headway (<i>MAH</i>), s Jeue Clearance Time (g s), s					0.0			0.0			3.2			3.2
Queue Clearan	ax Allow Headway (<i>MAH</i>), s ueue Clearance Time (<i>g s</i>), s											3.4			3.8
Green Extensio	ueue Clearance Time ($g s$), s reen Extension Time ($g e$), s					0.0			0.0			0.2			0.2
Phase Call Pro	ueue Clearance Time ($g \ s$), s reen Extension Time ($g \ e$), s nase Call Probability ax Out Probability											1.00		·	1.00
Max Out Proba	ueue Clearance Time (g_s), s reen Extension Time (g_e), s hase Call Probability lax Out Probability											0.00		(0.00
Movement Gro	Green Extension Time ($g \in$), s Phase Call Probability Max Out Probability Novement Group Results				EB			WE	5		NB			SB	
Approach Move	Queue Clearance Time (g_s) , s Green Extension Time (g_e) , s Phase Call Probability Max Out Probability Movement Group Results Approach Movement Assigned Movement				Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	teue Clearance Time ($g \ s$), s een Extension Time ($g \ e$), s ase Call Probability ax Out Probability Exercise Comp Results proach Movement signed Movement justed Flow Rate (v), veh/h justed Saturation Flow Rate (s), veh/h/ln				2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow I	ase Call Probability x Out Probability wement Group Results proach Movement signed Movement justed Flow Rate (v), veh/h			243	_	222	471		440		48			64	
Adjusted Satura	ation Flo	w Rate (<i>s</i>), veh/h/l	n	1848	_	1701	1823		1710		1679			1582	
Queue Service	Time (g	gs), s		0.0		5.0	0.0		11.4		0.0			0.0	
Cycle Queue C	learance	e Time (<i>g c</i>), s		4.8	_	5.0	10.9		11.4		1.4			1.8	
Green Ratio (g	ı/C)			0.53		0.53	0.53		0.53		0.31			0.31	
Capacity (c), v	/eh/h			1031	_	899	1019		904		587			570	
Volume-to-Cap	acity Ra	tio(X)		0.236		0.247	0.462		0.487		0.081			0.113	
Back of Queue	(Q), ft	/In (95 th percentile)	82		77	189		182		25			33	
Back of Queue	(Q), ve	eh/In (95 th percenti	le)	3.3		3.1	7.6		7.3		1.0			1.3	
Queue Storage	Ratio (RQ) (95 th percent	ile)	0.00		0.00	0.00		0.00		0.00			0.00	
Uniform Delay	(d 1), si	/veh		8.9		8.9	10.3		10.5		16.9			17.1	
Incremental De	lay (<i>d</i> 2), s/veh		0.5		0.7	1.5		1.9		0.3			0.4	
Initial Queue D	ncremental Delay (d ₂), s/ven nitial Queue Delay (d ȝ), s/veh			0.0		0.0	0.0		0.0		0.0			0.0	
Control Delay (itial Queue Delay (d ȝ), s/veh ontrol Delay (d), s/veh			9.5		9.6	11.9		12.3		17.2			17.5	
Level of Service	ontrol Delay (d), s/veh evel of Service (LOS)			Α		A	В		В		В			В	
Approach Dela	oproach Delay, s/veh / LOS					А	12.1		В	17.2	2	В	17.5	;	В
Intersection De	lay, s/ve	h / LOS				11	.7						В		
Mark					50			14/5						0.5	
Multimodal Re	sults	11.00		4.05	EB	D	4.05	VVE		0.44	NB	D	0.44	SB	D
Pedestrian LOS	Score	/ LUS		1.65		В	1.65		В	2.10	7	В	2.10		В
BICYCIE LOS SC	ore / LC	15		0.87		А	1.24		A	0.5		A	0.59	,	A

Copyright © 2025 University of Florida, All Rights Reserved.

HCS™ Streets Version 2024

Generated: 1/8/2025 1:59:37 PM

-								_						
General Information	797							Intersect	tion Inf	ormatio	on	*	4.4.4.4. 	× L
Agency	Bayer Becker							Duration,	h	0.250			4	
Analyst	WLW		Analys	is Date	e 10/30	/2024		Area Typ	е	Other		-		<u>A</u>
Jurisdiction	City of Cincinnati		Time F	Period	PM Pe	eak		PHF		0.92		*	W = E	******
Urban Street	Erie Avenue		Analys	is Year	2027			Analysis	Period	1> 7:(00	14		1
Intersection	Michigan Avenue		File Na	ame	Erie &	Michiga	an - 2	027 B PM	-Alt 1-3	.xus			*	
Project Description	Future Traffic, Ex. G	eometi	Ŋ									ľ	141411	× (*
								-				-		
Demand Information				EB		<u> </u>	W	B	<u> </u>	NB		<u> </u>	SB	-
Approach Movement			L	T	R	L	T	R		T	R	L	T	R
Demand (v), veh/h			18	856	12	18	36	1 15	6	15	39	42	13	33
Signal Information			<u> </u>		"UR.									
Cycle s 70.0	Reference Phase	2	4	4		_						2		Φ
Offset, s 0	Reference Point	End			<u></u>						1	Y 2	3	4
Uncoordinated No	Simult, Gap E/W	On	Green	37.0	22.0	0.0	0.0	0 0.0	0.0	_		-€		-+-
Force Mode Fixed	Simult, Gap N/S	On	Red	2.0	3.0	0.0	0.0	0.0	0.0		5	6	7	Y
		•	<u></u>	1	10.0	1	1	1	1111					•
Timer Results			EBL	-	EBT	WB	L	WBT	NB		NBT	SB	_	SBT
Assigned Phase					2			6			8			4
Case Number					8.0			8.0			8.0			8.0
Phase Duration, s					42.0			42.0			28.0			28.0
Change Period, (Y+R	c), S				5.0			5.0			6.0			6.0
Max Allow Headway (<i>MAH</i>), s				0.0			0.0			3.2			3.2
Queue Clearance Time	e (g s), s										3.9			4.8
Green Extension Time	(ge), s				0.0			0.0			0.3			0.3
Phase Call Probability											1.00			1.00
Max Out Probability										0.00			0.00	
Movement Group Re	Movement Group Results						WP			NB			SB	
Approach Movement			L	Т	R	L	Т	R	L	Т	R	L	T	R
Assigned Movement			5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow Rate (v	/), veh/h		503		461	219		209		65			96	
Adjusted Saturation FI	ow Rate (s), veh/h/lr	۱	1873		1720	1733		1705		1676			1541	
Queue Service Time (g s), s		0.0		12.1	0.0		4.6		0.0			0.6	
Cycle Queue Clearand	æ Time (<i>g c</i>), s		11.9		12.1	4.3		4.6		1.9			2.8	
Green Ratio (g/C)			0.53		0.53	0.53		0.53		0.31			0.31	
Capacity (<i>c</i>), veh/h			1044		909	972		901		583			560	
Volume-to-Capacity Ra	atio(X)		0.482		0.506	0.225		0.232		0.112			0.171	
Back of Queue (Q), 1	t/In (95 th percentile))	203		193	74		72		34			51	
Back of Queue (Q), v	eh/In (95 th percentil	e)	8.1		7.7	3.0		2.9		1.4			2.0	
Queue Storage Ratio	RQ) (95 th percent	ile)	0.00		0.00	0.00		0.00		0.00			0.00	
Uniform Delay (d 1), s	/veh		10.6		10.6	8.8		8.9		17.1			17.4	
Incremental Delay (d	2), s/veh		1.6		2.0	0.5		0.6		0.4			0.7	
Initial Queue Delay (d	з), s/veh		0.0		0.0	0.0		0.0		0.0			0.0	
Control Delay (d), s/v		12.2		12.6	9.3		9.5		17.5			18.1		
Level of Service (LOS)		В		В	Α		A		В			В		
Approach Delay, s/veh	/LOS		12.4		В	9.4		А	17.5	5	В	18.′		В
Intersection Delay, s/v				12	2.1						В			
Multimodal Results		EB	_		WB			NB	_		SB	-		
Pedestrian LOS Score	/LOS		1.65		В	1.65		В	2.10)	В	2.10)	В
BICYCIE LOS Score / L	5		1.28		A	0.84		A	0.60)	A	0.65)	A

Copyright © 2025 University of Florida, All Rights Reserved.

HCS™ Streets Version 2024

Generated: 1/8/2025 2:02:45 PM

_									_						
General Inform	nation								Interse	ction l	ofrmati	on		4444	× 1 <u>4</u>
Agency		Bayer Becker							Duratio	n, h	0.250)		4 %	
Analyst		WLW		Analys	sis Date	e Dec 1	0, 2024		Area Ty	ре	Othe	r	4		A. 2-
Jurisdiction		City of Cincinnati		Time F	Period	AM P	eak		PHF		0.92			₩‡E	- +
Urban Street		Edwards Road (SR	561)	Analys	sis Yea	2027			Analysi	s Perio	1 1 7:	00	14		*
Intersection		Observatory Avenu	е	File Na	ame	Edwa	rds & Ol	bserva	atory - 2	027 B A	M-Alt 1-	3.xus		11	
Project Descrip	tion	Future Traffic, Ex G	eometry	y - Alter	natives	1 - 3							h	41441	× 1*
Demand Inform	nation				EB		-	W	В		NB		<u> </u>	SB	
Approach Move	ement			L	Т	R		Т	R		T	R	L	Т	R
Demand (v), v	eh/h			26	339	23	30	52	27 20	1 3	5 95	48	177	61	85
Signal Informa	tion		_			-									-
	70.0	Peference Phase	2				* +*	в					7		<u>ት</u>
Offset s	0.0	Reference Point	End	_			^ îî	7				1	Y 2	3	4
Uncoordinated	No	Simult Gap E/W	On	Green	31.0	6.0	18.0	0.0	0.0	0.	2		Ð-	ιI	_
Eoreo Modo	Eivod	Simult. Gap L/W	On	Pellow	3.2	3.0	3.2	0.0		0.)	5	¥ 6	`	Y
Force Mode	Fixed	Sinut. Gap N/S	OII	Itteu	1.0	2.0	1.0	0.0	0.0	0.	<u> </u>	3	0	1	
Timer Results				EBI		EBT	WB	L	WBT	N	3L	NBT	SBI	-	SBT
Assigned Phase	e					2		-	6			8	7		4
Case Number						6.0		-	6.0			7.3	1.0		4.0
Phase Duration	I, S					36.0			36.0			23.0	11.0)	34.0
Change Period,	, (Y+R a	c), S				5.0			5.0			5.0	5.0		5.0
Max Allow Head	dway (A	, ЛАН), s				0.0			0.0			3.2	3.1		3.2
Queue Clearan	ce Time	(gs), s										6.2	7.2		6.2
Green Extensio	n Time	(ge), s				0.0			0.0			0.6	0.0		0.7
Phase Call Prol	bability											1.00	1.00)	1.00
Max Out Proba										0.00	1.00)	0.00		
Novement Group Posults					ED			\ \ /E)		ND			CD.	
Approach Move	mont	Juits		1	Т	R	1		, R			R	1	Т	R
Assigned Move	ment			5	2	12	1	6	16	3	8	18	7	1	14
Adjusted Flow F	Rate (v) veh/h		28	393	12	33	791			141	52	192	159	14
Adjusted Satura	ation Flo	w Rate (s) veh/h/l	n	696	1879		1006	1810	2	-	1732	1610	1810	1720	
Queue Service	Time (a	σ_s) s		0.7	10.3		1.7	30.3	3		0.0	1.7	5.2	4.2	
Cvcle Queue C	learance	e Time (q c). s		31.0	10.3		12.0	30.3	3		4.2	1.7	5.2	4.2	
Green Ratio (g	/C)			0.44	0.44		0.44	0.44			0.26	0.26	0.37	0.41	
Capacity (c), v	/eh/h			110	832		400	802			511	414	517	712	
Volume-to-Capa	acity Ra	tio(X)		0.257	0.473		0.082	0.98	7		0.277	0.126	0.372	0.223	
Back of Queue	(Q), ft	/In (95 th percentile	e)	29	196		18	612	:		88	31	101	72	
Back of Queue	(Q), ve	eh/In (95 th percenti	ile)	1.1	7.8		0.7	24.5	5		3.5	1.2	4.0	2.9	
Queue Storage	Ratio (RQ) (95 th percent	tile)	0.20	0.00		0.20	0.00)		0.00	0.42	1.01	0.00	
Uniform Delay ((d 1), s/	/veh		34.9	13.7		18.0	19.3	3		20.9	20.0	15.8	13.2	
Incremental De	lay (<i>d</i> 2), s/veh		5.6	1.9		0.4	28.8	3		1.3	0.6	2.0	0.7	
Initial Queue De	elay(d	3), s/veh		0.0	0.0		0.0	0.0			0.0	0.0	0.0	0.0	
Control Delay (Control Delay (<i>d</i>), s/veh						18.4	48.1			22.2	20.6	17.8	14.0	
Level of Service		D	В		В	D			С	С	В	В			
Approach Delay		17.3	3	В	46.9)	D	21	.8	С	16.1		В		
ntersection Delay, s/veh / LOS						3	1.2						С		
Multimodal Re	Multimodal Results				EB			WE	}		NB			SB	
Pedestrian LOS	Pedestrian LOS Score / LOS)	В	1.89)	В	1.	92	В	1.90)	В
Bicycle LOS Sc	edestrian LOS Score / LOS cycle LOS Score / LOS					A	1.85	5	В	0.	31	А	1.07		A

Copyright © 2025 University of Florida, All Rights Reserved.

HCS[™] Streets Version 2024

Generated: 1/8/2025 2:05:53 PM

	General Informatic Agency Analyst																
Agency AnalysisBayer BeckerULWAnalysis Date IntersectionDec 10, 2024Dare a Type AnalysisOlzoInter PeriodOlzoInter PeriodOlzoInter PeriodOlzoInter PeriodInter PeriodInter PeriodInter PeriodInter PeriodInter PeriodProzentoryAnalysis PeriodOlzoInter PeriodInter PeriodInter PeriodProzentoryAnalysis PeriodOlzoInter PeriodInter Peri	Agency Analyst	on								Intersect	ion Inf	ormatic	on	-	* 7 * * * *	× 1 <u>4</u>	
AnalysisWLWAnalysis DateDec 10, 2024Area TypeOtherItersetOtherJurisdictionCity of CincinnatiTime PeriodPM PeakPM PeakPM PakPakPile	Analyst		Bayer Becker							Duration,	h	0.250			4.8		
	lurisdiction	<u> </u>	WLW		Analys	sis Date	Dec 1	0, 2024		Area Typ	e	Other		_5 →			
	Junsuiction		City of Cincinnati		Time F	Period	PM P	eak		PHF		0.92			w‡e s	-	
IntersectionObservatory AvenueFile NameEdwards & Observatory - 2027 B PM-Alt 1-3.xusImage: Construction of the co	Urban Street		Edwards Road (SR	R 561)	Analys	sis Year	2027			Analysis	Period	1> 7:0	00	14		*	
Project Description Future Traffic, Ex. Geometry - Alternatives 1 - 3 Demand Information Demand Information Approach Movement L T R L T	Intersection		Observatory Avenu	Je	File Na	ame	Edwa	rds & Ol	bserva	tory - 202	27 B PN	/I-Alt 1-3	3.xus		11		
Demand InformationIII <th cols<="" td=""><td>Project Description</td><td>ı </td><td>Future Traffic, Ex. (</td><td>Geometi</td><td>y - Alter</td><td>natives</td><td>s 1 - 3</td><td></td><td></td><td></td><td></td><td></td><td></td><td>ľ</td><td>4 1 4 1</td><td>* (*</td></th>	<td>Project Description</td> <td>ı </td> <td>Future Traffic, Ex. (</td> <td>Geometi</td> <td>y - Alter</td> <td>natives</td> <td>s 1 - 3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ľ</td> <td>4 1 4 1</td> <td>* (*</td>	Project Description	ı	Future Traffic, Ex. (Geometi	y - Alter	natives	s 1 - 3							ľ	4 1 4 1	* (*
Demand informationIII <th co<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								_								
Approach MovementLTR </td <td>Demand Information</td> <td>ion</td> <td></td> <td></td> <td></td> <td>EB</td> <td></td> <td></td> <td>WE</td> <td>3</td> <td></td> <td>NB</td> <td>1 -</td> <td></td> <td>SB</td> <td></td>	Demand Information	ion				EB			WE	3		NB	1 -		SB		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Approach Movemer	ent			L	T	R	L	Т	R	L	T	R	L	Т	R	
Signal InformationCycle, s70.0Reference Phase2Green26.011.018.00.0<	Demand (v), veh/h	h		_	53	610	15	25	288	3 201	21	85	73	319	86	52	
Organ monomication Cycle, s 70.0 Reference Phase 2 C <thc< th=""> C C</thc<>	Signal Information	n					"a 111										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Cycle s 70	 	Reference Phase	2				1	E					<u>a</u>		Φ	
$\begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Offset s	0	Reference Point	End				51	~				1	Y 2	3	4	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Uncoordinated N	JO	Simult Gap F/W	On	Green	26.0	11.0	18.0	0.0	0.0	0.0	_		→	ιI	-+-	
Time ResultsEBLEBTWBLWBTNBLNBTSBLSBTAssigned Phase 2 6 2 6 8 7 4 Case Number -2 6 -3 7 4 Phase Duration, s 31.0 31.0 31.0 23.0 16.0 39.0 Change Period, $(Y+R_c)$, s 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 Max Allow Headway (MAH), s -2 0.0 -2 0.0 -2 5.4 11.2 5.3 Green Extension Time (g_c), s -2 0.0 -2 0.0 -2 -5.4 11.2 5.3 Green Extension Time (g_c), s -2 <td>Force Mode Fix</td> <td>ved</td> <td>Simult, Gap N/S</td> <td>On</td> <td>Red</td> <td>3.Z</td> <td>3.0</td> <td>3.2</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>-</td> <td>5</td> <td>6</td> <td></td> <td>Y</td>	Force Mode Fix	ved	Simult, Gap N/S	On	Red	3.Z	3.0	3.2	0.0	0.0	0.0	-	5	6		Y	
Timer ResultsEBIWBLWBTNBLNBTSBLSBTAssigned Phase \sim 2 \sim 6 \sim 8 7 4 Case Number \sim 6.0 \sim 6.0 \sim 7.3 1.0 4.0 Phase Duration, s \sim 31.0 31.0 5.0 7.3 1.0 4.0 Change Period, (Y+R c), s \sim 5.0 31.0 5.0 <td< td=""><td></td><td>keu </td><td></td><td>OII</td><td>Ttou</td><td>1.0</td><td>2.0</td><td>1.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td></td><td>-</td><td></td><td></td><td></td></td<>		keu		OII	Ttou	1.0	2.0	1.0	0.0	0.0	0.0		-				
Assigned Phase 2 6 8 7 4 Case Number 6.0 -7.3 1.0 4.0 Phase Duration, s 31.0 31.0 -7.3 1.0 4.0 Change Period, (Y+R c), s 31.0 -5.0 -7.3 16.0 39.0 Change Period, (Y+R c), s -5.0 -5.0 -5.0 <	Timer Results				EBI	_	EBT	WB	L	WBT	NBI	_	NBT	SBL	_	SBT	
Case Number $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{1}$ <th< td=""><td>Assigned Phase</td><td></td><td></td><td></td><td></td><td></td><td>2</td><td></td><td></td><td>6</td><td></td><td></td><td>8</td><td>7</td><td></td><td>4</td></th<>	Assigned Phase						2			6			8	7		4	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Case Number						6.0			6.0			7.3	1.0		4.0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Phase Duration, s						31.0			31.0			23.0	16.0) :	39.0	
Max Allow Headway (MAH), s \bigcirc	Change Period, (Y	/+R c), s				5.0			5.0			5.0	5.0		5.0	
Queue Clearance Time (g_s), sImage: Grame Time (g_s), s	Max Allow Headway	ay (M	1AH), s				0.0			0.0			3.2	3.1		3.2	
Green Extension Time (g e), sImage: Second sec	Queue Clearance T	Time	(gs), s										5.4	11.2	2	5.3	
Phase Call ProbabilityImage: Second sec	Green Extension Ti	ime (g e), s				0.0			0.0			0.6	0.0		0.7	
Max Out ProbabilityImage: Second state of the second state o	Phase Call Probabi	ility											1.00	1.00) .	1.00	
Movement Group Results Image: EB Image: EB <td>Max Out Probability</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.00</td> <td>1.00</td> <td>) (</td> <td>0.00</td>	Max Out Probability										0.00	1.00) (0.00			
Approach Movement CL T R L T R	Movement Crown			ГР				_		ND			CD.				
Assigned Movement 5 2 12 1 6 16 3 8 18 7 4 14	Approach Movemer	nt	uits		1	ED T	R	1	Т	R	1		R	1	т	R	
	Assigned Movemer	nt			5	2	12	1	6	16	2	8	18	7	1	14	
Adjusted Flow Rate (1/1) veh/h 58 6/9 27 532 115 79 347 150	Adjusted Flow Rate	(v)) veh/h		58	679	12	27	532	10	- 5	115	79	347	150	14	
Adjusted Nation Flow Rate (s), veh/h/lp 886, 1892 773, 1769 1793, 1610, 1810, 1779	Adjusted Saturation		w Rate (s) veh/h/	/ln	886	1892		773	1769			1793	1610	1810	1779		
Oueue Service Time (a_s) s 44 24.7 1.3 18.9 0.0 2.7 9.2 3.3	Queue Service Time			/111	44	24.7		1.3	18.9			0.0	27	92	3.3		
Cycle Queue Clearance Time (q.c.), s 23.3 24.7 26.0 18.9 3.4 2.7 9.2 3.3	Cycle Queue Clear	rance	Time (q_c) , s		23.3	24.7		26.0	18.9			3.4	2.7	9.2	3.3		
Green Ratio (q/C) 0.37 0.37 0.37 0.37 0.37	Green Ratio (a/C))			0.37	0.37		0.37	0.37			0.26	0.26	0.44	0.49		
Capacity (c), veh/h 193 703 118 657 523 414 664 864	Capacity (c), veh/r	, ′h			193	703		118	657			523	414	664	864		
Volume-to-Capacity Ratio (X) 0.299 0.967 0.231 0.809 0.220 0.192 0.522 0.174	Volume-to-Capacity	v Rat	io (X)		0.299	0.967		0.231	0.809)		0.220	0.192	0.522	0.174		
Back of Queue (Q), ft/ln (95 th percentile) 50 537 27 347 70 49 172 55	Back of Queue (Q), ft/	/In (95 th percentile	e)	50	537		27	347			70	49	172	55		
Back of Queue (Q), veh/ln (95 th percentile) 2.0 21.5 1.1 13.9 2.8 1.9 6.9 2.2	Back of Queue (Q), ve	h/In (95 th percent	, tile)	2.0	21.5		1.1	13.9			2.8	1.9	6.9	2.2		
Queue Storage Ratio (RQ) (95 th percentile) 0.34 0.00 0.30 0.00 0.00 0.65 1.72 0.00	Queue Storage Rat	tio (I	RQ) (95 th percen	, ntile)	0.34	0.00		0.30	0.00			0.00	0.65	1.72	0.00		
Uniform Delay (<i>d</i> ₁), s/veh 30.2 21.6 34.6 19.8 20.6 20.3 13.7 10.1	Uniform Delay(d 1	i), s/\	veh	,	30.2	21.6	1	34.6	19.8			20.6	20.3	13.7	10.1		
Incremental Delay (<i>d</i> ₂), s/veh 3.9 26.7 4.5 10.3 1.0 1.0 2.9 0.4		(d2)), s/veh		3.9	26.7		4.5	10.3			1.0	1.0	2.9	0.4		
Initial Queue Delay (d 3), s/veh 0.0 <	Incremental Delay (, с дз), s/veh		0.0	0.0		0.0	0.0			0.0	0.0	0.0	0.0		
Control Delay (d), s/veh 34.2 48.3 39.2 30.1 21.5 21.3 16.6 10.5	Incremental Delay (Initial Queue Delay	Control Delay (<i>d</i>), s/veh						39.2	30.1			21.5	21.3	16.6	10.5		
Level of Service (LOS) C D D C C B B	Incremental Delay (Initial Queue Delay Control Delay (<i>d</i>),	Level of Service (LOS)						D	С			С	С	В	В		
Approach Delay, s/veh / LOS 47.2 D 30.6 C 21.5 C 14.8 B	Incremental Delay (Initial Queue Delay Control Delay (<i>d</i>), Level of Service (LC	Approach Delay, s/veh / LOS					D	30.6	3	С	21.5	5	С	14.8	5	В	
Intersection Delay, s/veh / LOS 31.9 C	Incremental Delay (Initial Queue Delay Control Delay (<i>d</i>), Level of Service (LC Approach Delay, s/v	/veh /	LOS				0.	1.0						<u>_</u>			
	Incremental Delay (Initial Queue Delay Control Delay (<i>d</i>), Level of Service (LC Approach Delay, s/v Intersection Delay, s	/veh / s/veł	h / LOS				3	1.9						0			
Multimodal Results EB WB NB SB	Incremental Delay (Initial Queue Delay Control Delay (<i>d</i>), Level of Service (LC Approach Delay, s/v Intersection Delay, s	/veh / s/veł	LOS h / LOS				3	1.9									
Pedestrian LOS Score / LOS 1.90 B 1.90 B 1.92 B 1.89 B	Incremental Delay (Initial Queue Delay Control Delay (<i>d</i>), Level of Service (LC Approach Delay, s/v Intersection Delay, s/v Multimodal Result	/veh / s/veł ts	LOS h / LOS			EB	5	1.9	WB			NB			SB		
Bicycle LOS Score / LOS 1.70 B 1.41 A 0.81 A 1.31 A	Incremental Delay (Initial Queue Delay Control Delay (<i>d</i>), Level of Service (LC Approach Delay, s/v Intersection Delay, s Multimodal Result Pedestrian LOS Sco	/veh / s/veł ts core /	LOS h / LOS		1.90	EB	B	1.9	WB	В	1.92	NB	B	1.89	SB	В	

Copyright © 2025 University of Florida, All Rights Reserved.

HCS[™] Streets Version 2024

Generated: 1/8/2025 2:08:49 PM

		control hepoin	
General Information		Site Information	
Analyst	WLW	Intersection	Edwards Avenue and Site Access 1
Agency/Co.	Bayer Becker	Jurisdiction	City of Cincinnati
Date Performed	12/12/2024	East/West Street	Site Access 1
Analysis Year	2027	North/South Street	Edwards Avenue
Time Analyzed	AM Peak	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	2027 Build Traffic Projections - Alternative 1		
Lanes			

Vehicle Volumes and Adju	ıstme	nts														
Approach		Eastb	ound			West	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	2	0	0	0	2	0
Configuration							LR				Т	TR		LT	Т	
Volume (veh/h)						35		29			268	25		13	281	
Percent Heavy Vehicles (%)						3		3						3		
Proportion Time Blocked																
Percent Grade (%)						(C									
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)						7.5		6.9						4.1		
Critical Headway (sec)						6.86		6.96						4.16		
Base Follow-Up Headway (sec)						3.5		3.3						2.2		
Follow-Up Headway (sec)						3.53		3.33						2.23		
Delay, Queue Length, and	l Leve	l of Se	ervice													
Flow Rate, v (veh/h)							70							14		
Capacity, c (veh/h)							617							1231		
v/c Ratio							0.11							0.01		
95% Queue Length, Q ₉₅ (veh)							0.4							0.0		
95% Queue Length, Q ₉₅ (ft)							10.2							0.0		
Control Delay (s/veh)							11.6							8.0	0.1	
Level of Service (LOS)							В							А	А	
Approach Delay (s/veh)						11	1.6							0	.4	
Approach LOS							3								4	

Copyright © 2025 University of Florida. All Rights Reserved.

HCSTM TWSC Version 2024 Edwards & Site 1 - 2027 Build AM-Alt 1.xtw

Generated: 1/27/2025 3:28:23 PM

General Information		Site Information	
Analyst	WLW	Intersection	Edwards Avenue and Site Access 1
Agency/Co.	Bayer Becker	Jurisdiction	City of Cincinnati
Date Performed	12/12/2024	East/West Street	Site Access 1
Analysis Year	2027	North/South Street	Edwards Avenue
Time Analyzed	PM Peak	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	2027 Build Traffic Projections - Alternative 1		
Lanes			

Vehicle Volumes and Adju	istme	nts														
Approach		Eastb	ound			West	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	2	0	0	0	2	0
Configuration							LR				Т	TR		LT	Т	
Volume (veh/h)						37		18			328	53		52	399	
Percent Heavy Vehicles (%)						3		3						3		
Proportion Time Blocked																
Percent Grade (%)						(C									
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)						7.5		6.9						4.1		
Critical Headway (sec)						6.86		6.96						4.16		
Base Follow-Up Headway (sec)						3.5		3.3						2.2		
Follow-Up Headway (sec)						3.53		3.33						2.23		
Delay, Queue Length, and	Leve	l of Se	ervice													
Flow Rate, v (veh/h)							60							57		
Capacity, c (veh/h)							421							1134		
v/c Ratio							0.14							0.05		
95% Queue Length, Q ₉₅ (veh)							0.5							0.2		
95% Queue Length, Q ₉₅ (ft)							12.8							5.1		
Control Delay (s/veh)							15.0							8.3	0.4	
Level of Service (LOS)							В							А	А	
Approach Delay (s/veh)						15	5.0							1	.3	
Approach LOS						I	3							1	Ą	

Copyright © 2025 University of Florida. All Rights Reserved.

HCSTM TWSC Version 2024 Edwards & Site 1 - 2027 Build PM-Alt 1.xtw

Generated: 1/27/2025 3:30:33 PM

General Information		Site Information												
Analyst	WLW	Intersection	Michigan Avenue and Site Access 2											
Agency/Co.	Bayer Becker	Jurisdiction	City of Cincinnati											
Date Performed	12/12/2024	East/West Street	Site Access 2											
Analysis Year	2027	North/South Street	Michigan Avenue											
Time Analyzed	AM Peak	Peak Hour Factor	0.92											
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25											
Project Description	2027 Build Traffic Projections - Alternative 1 - 3	3												
Lanes														

Vehicle Volumes and Adju	istme	nts														
Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	0	0	0	0	1	0	0	0	1	0
Configuration			LR							LT						TR
Volume (veh/h)		13		1						1	31				47	17
Percent Heavy Vehicles (%)		3		3						3						
Proportion Time Blocked																
Percent Grade (%)		()													
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)		7.1		6.2						4.1						
Critical Headway (sec)		6.43		6.23						4.13						
Base Follow-Up Headway (sec)		3.5		3.3						2.2						
Follow-Up Headway (sec)		3.53		3.33						2.23						
Delay, Queue Length, and	Leve	l of Se	ervice													
Flow Rate, v (veh/h)			15							1						
Capacity, c (veh/h)			907							1525						
v/c Ratio			0.02							0.00						
95% Queue Length, Q ₉₅ (veh)			0.1							0.0						
95% Queue Length, Q ₉₅ (ft)			2.6							0.0						
Control Delay (s/veh)			9.0							7.4	0.0					
Level of Service (LOS)			А							А	А					
Approach Delay (s/veh)		9	.0							0	.2					
Approach LOS			4								4					

Copyright © 2025 University of Florida. All Rights Reserved.

HCSTM TWSC Version 2024 Michigan & Site 2 - 2027 Build AM-Alt 1-3.xtw

Generated: 1/8/2025 2:32:30 PM

		control hepoir	
General Information		Site Information	
Analyst	WLW	Intersection	Michigan Avenue and Site Access 2
Agency/Co.	Bayer Becker	Jurisdiction	City of Cincinnati
Date Performed	12/12/2024	East/West Street	Site Access 2
Analysis Year	2027	North/South Street	Michigan Avenue
Time Analyzed	PM Peak	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	2027 Build Traffic Projections - Alternative 1 - 3	3	
Lanes			

Vehicle Volumes and Adju	istme	nts														
Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	0	0	0	0	1	0	0	0	1	0
Configuration			LR							LT						TR
Volume (veh/h)		25		1						1	36				26	17
Percent Heavy Vehicles (%)		3		3						3						
Proportion Time Blocked																
Percent Grade (%)		()													
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He																
Base Critical Headway (sec)		7.1		6.2						4.1						
Critical Headway (sec)		6.43		6.23						4.13						
Base Follow-Up Headway (sec)		3.5		3.3						2.2						
Follow-Up Headway (sec)		3.53		3.33						2.23						
Delay, Queue Length, and	Leve	l of Se	ervice													
Flow Rate, v (veh/h)			28							1						
Capacity, c (veh/h)			925							1554						
v/c Ratio			0.03							0.00						
95% Queue Length, Q ₉₅ (veh)			0.1							0.0						
95% Queue Length, Q ₉₅ (ft)			2.6							0.0						
Control Delay (s/veh)			9.0							7.3	0.0					
Level of Service (LOS)			А							А	А					
Approach Delay (s/veh)		9	.0							0	2					
Approach LOS			4							-	4					

Copyright © 2025 University of Florida. All Rights Reserved.

HCSTM TWSC Version 2024 Michigan & Site 2 - 2027 Build PM-Alt 1-3.xtw

Generated: 1/8/2025 2:35:33 PM

ALTERNATIVE 2

_															
General Inforn	nation	700						1	ntersec	tion Inf	ormatic	on	2	4.74.11	= L <u>.</u>
Agency		Bayer Becker							Duration	, h	0.250			4 4	
Analyst		WLW		Analys	is Date	e 10/30	/2024	A	Area Typ	e	Other		4		소문
Jurisdiction		City of Cincinnati		Time F	Period	AM P	eak	F	PHF		0.92			₩ĴE	+ + -
Urban Street		Erie Avenue		Analys	is Yeaı	2027		A	Analysis	Period	1> 7:0	00	J. 4.		¥ (
Intersection		Edwards Road (SR	561)	File Na	ame	Erie 8	Edward	ds - 202	27 B AM	-Alt 2.xı	JS			51	
Project Descrip	tion	Future Traffic, Modi	fied Ge	ometry -	Alt 2								h	4 † 4 ¶* †	* /*
Domand Inform	nation				EP		<u> </u>	\\/P			NR			<u>SB</u>	
Approach Move	ment			1		P			P			P	1 1		P
Domand (v) v	oh/h			20	230	20	L 40	506	265	21	241	25	L 162	215	40
				20	230	- 39	40	500	205	21	241	- 55	102	215	40
Signal Informa	ation					<u> </u>	11.								1
Cycle, s	70.0	Reference Phase	2				R.	,				-	4	γ	Φ
Offset, s	0	Reference Point	End	Green	28.0	80	17.0	100	0.0	0.0		1	Y 2	3	4
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.4	3.0	3.0	0.0	0.0	0.0	_		\rightarrow	LΙ	512
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.6	2.0	3.0	0.0	0.0	0.0		5	6	7	8
				-	ī		_								
Timer Results				EBL		EBT	WB		WBT	NBI		NBT	SBL	-	SBT
Assigned Phas	e					2			6	3	_	8	7		4
Case Number						8.0			6.0	1.1		4.0	1.1		4.0
Phase Duration	1, S	<u>,</u>				34.0			34.0	13.0)	23.0	13.0) :	23.0
Change Period	, (Y+R (c), S			_	6.0			6.0	5.0		6.0	5.0		6.0
Max Allow Head	dway(/	ИАН), s			_	0.0		_	0.0	3.1		3.1	3.1	_	3.1
Queue Clearan		(gs), s				0.0			0.0	2.6	_	12.2	6.9		11.4
Green Extensio		(ge), s			_	0.0		+	0.0	0.0		0.6	0.0		0.7
Phase Call Pro	Max Out Probability									1.00)	1.00	1.00		1.00
Max Out Ploba								0.0		0.30	1.00		J.24		
Movement Gro	oup Res	ults			EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment			5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow I	Rate(<i>v</i>), veh/h		159		155	43	444	394	23	300		176	277	
Adjusted Satura	ation Flo	w Rate (<i>s</i>), veh/h/l	n	1568		1648	1104	1900	1679	1810	1858		1810	1848	
Queue Service	Time (g	g s), s		0.2	_	4.4	1.9	12.8	12.9	0.6	10.2		4.9	9.4	
Cycle Queue C	learance	e Time (<i>g c</i>), s		13.1	_	4.4	6.3	12.8	12.9	0.6	10.2		4.9	9.4	
Green Ratio (g	ı/C)			0.40	_	0.40	0.40	0.40	0.40	0.36	0.24		0.36	0.24	
Capacity (c), v	/eh/h			686		659	476	760	672	400	451		385	449	
Volume-to-Cap	acity Ra	tio (X)	、 、	0.232	_	0.235	0.091	0.585	0.586	0.057	0.665		0.458	0.618	
Back of Queue	(Q), ft	/In (95 th percentile)	74		72	22	239	220	11	220		101	202	
Back of Queue	(Q), Ve	en/in (95 th percenti	ie) ile)	2.9		2.9	0.9	9.6	8.8	0.4	8.8		4.0	8.1	
Queue Storage		RQ) (95 th percent	ile)	0.00	_	0.00	0.55	0.00	0.00	0.00	0.00		1.34	0.00	
Uniform Delay	$(a_1), s_1$			13.8		13.9	16.0	10.4	10.5	15.0	23.9		17.3	23.0	
Incremental De	ay (u 2			0.0		0.0	0.4	3.3	3.7	0.3	7.5		3.9	0.3	
Control Delay (d) shu	3), 5/VEII		14.6		14.7	16.4	10.0	20.2	15.0	0.0 31.5		21.2	20.0	
Level of Service		14.0 B	_	14.7 R	10.4 R	19.7 B	20.2	15.9 B	01.0 C		21.2	29.9			
Approach Dela	Level of Service (LOS)					B	10 9		B	30 /	1	C	26 5		C
Intersection De	Approach Delay, s/veh / LOS			14.7		2	2					0	20.0 C		<u> </u>
											<u> </u>				
Multimodal Re		EB			WB			NB			SB				
Pedestrian LOS	Pedestrian LOS Score / LOS					В	1.90)	В	2.28	3	В	2.11		В
Bicycle LOS Sc	ore / LC)S		0.75		А	1.21		А	1.02	2	А	1.24		А

 $Copyright @ {\tt 2025} \ University \ of \ Florida, \ All \ Rights \ Reserved.$

HCS™ Streets Version 2024

Generated: 1/27/2025 3:07:52 PM

General Inform	nation							I	ntersec	tion Inf	ormatio	on	*	****	× 4
Agency		Bayer Becker						Γ	Duration,	, h	0.250			4 5	
Analyst		WLW		Analys	is Dat	e 10/30	/2024	A	Area Typ	е	Other		4		<u>لم</u> 14
Jurisdiction		City of Cincinnati		Time F	Period	PM P	eak	F	PHF		0.92			W = E	+ 4
Urban Street		Erie Avenue		Analys	is Yea	r 2027		A	Analysis	Period	1> 7:0	00	14		1 M
Intersection		Edwards Road (SR &	561)	File Na	ame	Erie 8	Edward	ds - 202	27 B PM	-Alt 2.xu	JS			5 1	
Project Descript	tion	Future Traffic, Modifi	ed Ge	ometry -	Alt 2								ľ	41441	۲ (⁴
Demand Inform	nation				EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	T	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			38	594	65	45	213	150	27	271	50	238	341	49
Signal Informa	tion														
	70.0	Reference Phase	2	-	1			_F					<u> </u>	5	<u> </u>
Offset s	0	Reference Point	End	-		1	51	*				1	Y 2	3	4
Uncoordinated	No	Simult Gap E/W	On	Green	27.0	8.0	18.0	18.0 0.0 0.0 3.0 0.0 0.0			_		↔	ιI	-+-
Force Mode	Fixed	Simult Gap N/S	On	Red	2.6	2.0	3.0	0.0	0.0	0.0	_	5	6	7	Y
T OFCC MODE	TIXCU	olindit. Cap N/O	OII	Ticu	2.0	2.0	0.0	0.0	0.0	0.0				,	
Timer Results				EBL		EBT	WB	L	WBT	NBI	_	NBT	SBI	_	SBT
Assigned Phase	e					2			6	3		8	7		4
Case Number					+	8.0			6.0	1.1	4.0		1.1		4.0
Phase Duration	on, s					33.0			33.0	13.0)	24.0	13.0)	24.0
Change Period,	nge Period, (Y+R c), s					6.0			6.0	5.0		6.0	5.0		6.0
Max Allow Head	lax Allow Headway (<i>MAH</i>), s					0.0			0.0	3.1		3.1	3.1		3.1
Queue Clearan	ce Time	(gs), s								2.7		14.1	9.3		17.4
Green Extensio	n Time	(g e), s				0.0			0.0	0.0		0.8	0.0		0.2
Phase Call Prob	bability									1.00)	1.00	1.00)	1.00
Max Out Proba	bility									0.02	2	0.70	1.00)	1.00
	_	•		E									_	0.5	
Movement Gro	oup Res	ults						WB	Б		NB	D		SB	D
Approach Nove	ment			E E	ו ר	К 12		6	К 16	L 2	0	Г. 10		1	<u>к</u>
Adjusted Flow	nieni Poto (v) vob/b		0 205	2	12	1	0	10	3 20	0 240	10	7	4	14
Adjusted Flow F), ven/n w Pata (c) vob/b/lp		1902	_	1670	49	1000	1643	1910	19/9		209	424	
	Time (0.6		11.0	20	5.2	55	0.7	1040		73	15.4	
	learance	$a = Time(a_c) = s$		11 4		11.9	15.8	5.3	5.5	0.7	12.1		7.3	15.4	
Green Ratio (a	/C)	o mile (g e), e		0.39		0.39	0.39	0.39	0.39	0.37	0.26		0.37	0.26	
Capacity (c), y	/eh/h			752		644	264	733	634	318	475		368	478	
Volume-to-Capa	acity Ra	tio (X)		0.525		0.563	0.186	0.282	0.296	0.092	0.734		0.703	0.887	
Back of Queue	(Q), ft	/In (95 th percentile)		215		207	34	101	94	14	255		172	348	
Back of Queue	(Q), ve	eh/In (95 th percentile))	8.6	_	8.3	1.3	4.0	3.7	0.6	10.2		6.9	13.9	
Queue Storage	Ratio (RQ) (95 th percentil	e)	0.00	_	0.00	0.84	0.00	0.00	0.00	0.00		2.30	0.00	
Uniform Delay ((d1), s	/veh		16.7		16.9	23.1	14.8	14.9	16.3	23.8		18.0	25.0	
Incremental Del	lay (<i>d</i> 2), s/veh		2.6		3.5	1.5	1.0	1.2	0.6	9.7		10.7	21.0	
Initial Queue De	elay (<i>d</i>	₃), s/veh		0.0		0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Control Delay (lay (<i>d</i>), s/veh			19.3		20.4	24.6	15.8	16.1	16.9	33.5		28.7	46.0	
Level of Service	of Service (LOS)			В		С	С	В	В	В	С		С	D	
Approach Delay	/, s/veh	/LOS		19.8		В	16.9)	В	32.2	2	С	39.5	5	D
Intersection Del	ntersection Delay, s/veh / LOS				27	7.2						С			
Multimodal Re	sults				EB	5		WB	_		NB	D		SB	-
Pedestrian LOS	Score	/ LUS	LOS			В	1.90)	В	2.28	5	В	2.11		В
BICYCIE LOS SC	ore / LC	DS		1.11		A	0.85		A	1.11		A	1.61		В

 $Copyright @ {\tt 2025} \ University \ of \ Florida, \ All \ Rights \ Reserved.$

HCS™ Streets Version 2024

Generated: 1/27/2025 3:12:27 PM

		control hepoire	
General Information		Site Information	
Analyst	WLW	Intersection	Edwards Avenue and Site Access 1
Agency/Co.	Bayer Becker	Jurisdiction	City of Cincinnati
Date Performed	12/12/2024	East/West Street	Site Access 1
Analysis Year	2027	North/South Street	Edwards Avenue
Time Analyzed	AM Peak	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	2027 Build Traffic Projections - Alternative 2		
Lanes			

Vehicle Volumes and Adju	istme	nts															
Approach		Eastbound Westbound								North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6	
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	1	2	0	
Configuration							LR					TR		L	Т		
Volume (veh/h)						35		29			268	25		13	281		
Percent Heavy Vehicles (%)						3		3						3			
Proportion Time Blocked																	
Percent Grade (%)							0										
Right Turn Channelized																	
Median Type Storage				Undi	vided								-				
Critical and Follow-up He	adwa	ys															
Base Critical Headway (sec)						7.5		6.2						4.1			
Critical Headway (sec)						6.86		6.26						4.16			
Base Follow-Up Headway (sec)						3.5		3.3						2.2			
Follow-Up Headway (sec)						3.53		3.33					2.23				
Delay, Queue Length, and	l Leve	l of Se	ervice														
Flow Rate, v (veh/h)							70							14			
Capacity, c (veh/h)							585							1231			
v/c Ratio							0.12							0.01			
95% Queue Length, Q ₉₅ (veh)							0.4							0.0			
95% Queue Length, Q ₉₅ (ft)							10.2							0.0			
Control Delay (s/veh)							12.0							8.0			
Level of Service (LOS)							В							А			
Approach Delay (s/veh)						12	2.0							0	.4		
Approach LOS							В						A				

Copyright © 2025 University of Florida. All Rights Reserved.

HCS TM TWSC Version 2024 Edwards & Site 1 - 2027 Build AM-Alt 2.xtw

Generated: 1/27/2025 3:38:27 PM

General Information		Site Information	
Analyst	WLW	Intersection	Edwards Avenue and Site Access 1
Agency/Co.	Bayer Becker	Jurisdiction	City of Cincinnati
Date Performed	12/12/2024	East/West Street	Site Access 1
Analysis Year	2027	North/South Street	Edwards Avenue
Time Analyzed	PM Peak	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	2027 Build Traffic Projections - Alternative 2		
Lanes			

Vehicle Volumes and Adju	ıstme	nts																	
Approach		Eastbound Westbound								North	bound			South	bound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R			
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6			
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	1	2	0			
Configuration							LR					TR		L	Т				
Volume (veh/h)						37		18			328	53		52	399				
Percent Heavy Vehicles (%)						3		3						3					
Proportion Time Blocked																			
Percent Grade (%)							0												
Right Turn Channelized																			
Median Type Storage				Undi	vided														
Critical and Follow-up He	adwa	dways																	
Base Critical Headway (sec)						7.5		6.2						4.1					
Critical Headway (sec)						6.86		6.26						4.16					
Base Follow-Up Headway (sec)						3.5		3.3						2.2					
Follow-Up Headway (sec)						3.53		3.33					2.23						
Delay, Queue Length, and	l Leve	l of Se	ervice																
Flow Rate, v (veh/h)							60							57					
Capacity, c (veh/h)							409							1134					
v/c Ratio							0.15							0.05					
95% Queue Length, Q ₉₅ (veh)							0.5							0.2					
95% Queue Length, Q ₉₅ (ft)							12.8							5.1					
Control Delay (s/veh)							15.3							8.3					
Level of Service (LOS)							С							А					
Approach Delay (s/veh)						15	5.3							1	.0				
Approach LOS						(С						A						

Copyright © 2025 University of Florida. All Rights Reserved.

HCSTM TWSC Version 2024 Edwards & Site 1 - 2027 Build PM-Alt 2.xtw Generated: 1/27/2025 3:40:54 PM

ALTERNATIVE 3

General Inform	nation	700							ntersec	tion Inf	ormatio	on	<i>x</i>	****	be La
Agency		Bayer Becker						[Duration	, h	0.250			45	
Analyst		WLW		Analys	is Date	e 10/30	/2024	I	Area Typ	е	Other		4		<u>لم</u> 14-
Jurisdiction		City of Cincinnati		Time F	Period	AM P	eak	F	PHF		0.92			₩ĴE	+
Urban Street		Erie Avenue		Analys	is Yea	r 2027		ŀ	Analysis	Period	1> 7:0	00	14		7.4
Intersection		Edwards Road (SR	561)	File Na	ame	Erie 8	Edware	ds - 20	27 B AM	-Alt 3.xı	ls			5 tr	
Project Descrip	tion	Future Traffic, Modi	fied Ge	ometry -	Alt 3								ľ	4144	۲ (*
Demand Inform	nation				EB		-	WB	; 		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (<i>v</i>), v	eh/h			20	230	39	40	506	6 265	21	241	35	162	215	40
Signal Informa	tion					-					_				
Cycle s	70.0	Reference Phase	2					_					<u> </u>	5	<u> </u>
Offset s	0	Reference Point	End			1	- 11					1	Y 2	3	4
Uncoordinated	No	Simult Gap E/W	On	Green	28.0	8.0	17.0	0.0	0.0	0.0	_		Ð-	ιI	
Force Mode	Fixed	Simult, Gap N/S	On	Red	2.6	2.0	3.0	0.0	0.0	0.0	_	5	6		Y
T OFCE WOLC	TIXCU	olindit. Cap N/O	OII	Ticu	2.0	2.0	0.0	0.0	0.0	0.0					
Timer Results				EBL	_	EBT	WB	L	WBT	NBI	_	NBT	SBI	_	SBT
Assigned Phase	e					2			6	3		8	7		4
Case Number						8.0			6.0	1.1		3.0	1.1		4.0
Phase Duration	ration, s					34.0			34.0	13.0)	23.0	13.0)	23.0
Change Period	hange Period, (Y+R c), s					6.0			6.0	5.0		6.0	5.0		6.0
Max Allow Headway (<i>MAH</i>), s						0.0			0.0	3.1		3.1	3.1		3.1
Queue Clearan	ce Time	(gs), s							2			10.5	6.9		11.4
Green Extensio	n Time	(ge),s				0.0			0.0	0.0		0.7	0.0		0.7
Phase Call Pro	bability									1.00)	1.00	1.00)	1.00
Max Out Proba	bility									0.01		0.15	1.00)	0.24
Movement Gro	oup Res	ults		EB			WE				NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment			5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow I	Rate (v), veh/h		159		155	43	444	394	23	262	38	176	277	
Adjusted Satura	ation Flo	w Rate (<i>s</i>), veh/h/l	n	1568		1648	1104	1900	1679	1810	1900	1610	1810	1848	
Queue Service	Time (g	y s), S		0.2		4.4	1.9	12.8	12.9	0.6	8.5	1.3	4.9	9.4	
Cycle Queue C	learance	e Time (<i>g c</i>), s		13.1		4.4	6.3	12.8	12.9	0.6	8.5	1.3	4.9	9.4	
Green Ratio (g	/C)			0.40		0.40	0.40	0.40	0.40	0.36	0.24	0.24	0.36	0.24	
Capacity (c), v	/eh/h			686		659	476	760	672	400	461	391	415	449	
Volume-to-Capa	acity Ra	tio (<i>X</i>)		0.232		0.235	0.091	0.585	0.586	0.057	0.568	0.097	0.424	0.618	
Back of Queue	(Q), ft	/In (95 th percentile)	74		72	22	239	220	11	187	23	98	202	
Back of Queue	(Q), ve	eh/In (95 th percenti	le)	2.9		2.9	0.9	9.6	8.8	0.4	7.5	0.9	3.9	8.1	
Queue Storage	Ratio (RQ) (95 th percent	ile)	0.00		0.00	0.55	0.00	0.00	0.22	0.00	0.46	1.31	0.00	
Uniform Delay	(d 1), s/	/veh		13.8		13.9	16.0	16.4	16.5	15.6	23.3	20.5	17.0	23.6	
Incremental De	lay (<i>d</i> 2), s/veh		0.8		0.8	0.4	3.3	3.7	0.3	5.0	0.5	3.1	6.3	
Initial Queue De	elay (d	3), s/veh		0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (rol Delay (d), s/veh			14.6		14.7	16.4	19.7	20.2	15.9	28.3	21.0	20.1	29.9	
Level of Service		11.05		В		B	B	B		B			U OC	C	
Approach Delay	y, s/veh	/ LUS		14.7		В	19.8	5	В	26.5		C	26.1		U
intersection De	Intersection Delay, s/veh / LOS		21									С			
Multimodal Re	sults				FR			WB			NB			SB	
Pedestrian I OS	S Score	/LOS		2 09		В	1.90)	В	2.28	3	В	2 11		В
Bicycle I OS So	ore / I C	/ LOS		0.75		A	1.00		A	1.02	>	_ A	1 24	-	_ A
, 510 200 00	3.37 20	3		0.10									1.2		

 $Copyright @ {\tt 2025} \ University \ of \ Florida, \ All \ Rights \ Reserved.$

HCS™ Streets Version 2024

Generated: 1/24/2025 4:30:21 PM

General Inform	nation							I	ntersec	tion Inf	ormatic	on	- É	*****	× L.
Agency		Bayer Becker		1		1		[Duration	, h	0.250			4.4	
Analyst		WLW		Analys	is Date	10/30	/2024	ļ	Area Typ	e	Other		<u></u> 4 → x		<u>لم</u> الم
Jurisdiction		City of Cincinnati		Time F	Period	PM P	eak	F	PHF		0.92		*	W‡E B	수
Urban Street		Erie Avenue		Analys	is Year	2027		/	Analysis	Period	1> 7:0	00	74		1
Intersection		Edwards Road (SR	561)	File Na	ame	Erie 8	Edward	ds - 20	27 B PM	-Alt 3.xı	JS			510	
Project Descrip	tion	Future Traffic, Modi	fied Ge	ometry -	Alt 3								n	4 1 4 Y 1	۲ (*
Demand Inform	nation				EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v	/eh/h			38	594	65	45	213	150	27	271	50	238	341	49
Signal Informa	ation					ļ	24						_	-	
Cycle, s	70.0	Reference Phase	2	-	₩ *		51	7					€.	ר י	фя 🕺
Offset, s	0	Reference Point	End	Green	27.0	8.0	18.0	0.0	0.0	0.0			x		
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.4	3.0	3.0	0.0	0.0	0.0			2	5	×17
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.6	2.0	3.0	0.0	0.0	0.0		5	6	7	8
									MOT			NET	0.01		0.D.T.
Limer Results				EBL		EBI	WB		WBI	NBI		NRI	SBL		SBI
Assigned Phase	e					2	<u> </u>		0	3		8	1 1	\rightarrow	4
Case Number				<u> </u>		0.0	<u> </u>		0.0	1.1) 24.0		1.1	<u> </u>	4.0
Change Period	(V±P	•)				60 60			60 60	5.0	, .	24.0 6.0	5.0	,	24.0 6.0
Max Allow Headway (<i>MAH</i>), s						0.0		-	0.0	3.0		3.1	3.0		3.1
Queue Clearance Time (g_s), s					-	0.0			0.0	2.7		11 5	9.1		17 4
Queue Clearance Time (g_s), s Green Extension Time (g_s), s						0.0			0.0 0.0			1.0 (0.2
Phase Call Pro	hability	(9,0), 3				0.0			0.0	1.00		1.0	1.00	, –	1.00
Max Out Proba	bility									0.02	2	0.23	1.00)	1.00
	y														
Movement Gro	oup Res	sults			EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment	· · · ·		5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow I	Rate (v), veh/h		395	_	363	49	207	188	29	295	54	259	424	
Adjusted Satura		bw Rate (s), veh/h/l	n	1802		1670	/4/	1900	1643	1810	1900	1610	1810	1858	
Queue Service	lime (g	gs), s e Time (g s) s		0.6	_	11.9	3.9 15.8	5.3	5.5	0.7	9.5	1.8	7.3	15.4	
Green Ratio (o	$\frac{1}{C}$	e fille (g ?), s		0.39	_	0.39	0.39	0.39	0.39	0.7	0.26	0.26	0.37	0.26	
Capacity (c), y	/eh/h			752		644	264	733	634	318	489	414	411	478	
Volume-to-Cap	acity Ra	itio(X)		0.525		0.563	0.186	0.282	0.296	0.092	0.603	0.131	0.629	0.887	
Back of Queue	(Q), ft	t/ln (95 th percentile	:)	215		207	34	101	94	14	206	32	160	348	
Back of Queue	(Q), ve	eh/In (95 th percenti	ile)	8.6	_	8.3	1.3	4.0	3.7	0.6	8.2	1.3	6.4	13.9	
Queue Storage	Ratio (RQ) (95 th percent	tile)	0.00	_	0.00	0.84	0.00	0.00	0.29	0.00	0.64	2.13	0.00	
Uniform Delay	(d1), s	/veh		16.7	_	16.9	23.1	14.8	14.9	16.3	22.9	20.0	17.4	25.0	
Incremental De	lay (<i>d</i> 2), s/veh		2.6		3.5	1.5	1.0	1.2	0.6	5.4	0.7	7.1	21.0	
Initial Queue De	elay (<i>d</i>	з), s/veh		0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (Control Delay (<i>d</i>), s/veh			19.3		20.4	24.6	15.8	16.1	16.9	28.3	20.6	24.5	46.0	
Level of Service	e (LOS)			В		C	С	В	В	В	С	С	С	D	
Approach Delay	y, s/veh	/LOS		19.8		В	16.9	9	В	26.3	3	С	37.8	5	D
Intersection Delay, s/veh / LOS			25	5.8						С					
Multimed - D	oultr										NID			00	
Nutrimodal Re	Sults	/1.08		2.00	EB	D	4.00	VB	D	0.00	NB	D	0.44	SB	D
Riovela LOS Co				2.09			1.90			2.28			2.11	_	D
Bicycle LOS Score / LOS				1.11		А	0.00		A	1.11		Α	1.0		D

Copyright © 2025 University of Florida, All Rights Reserved.

HCS™ Streets Version 2024

Generated: 1/24/2025 4:31:49 PM

		Controport	
General Information		Site Information	
Analyst	WLW	Intersection	Edwards Avenue and Site Access 1
Agency/Co.	Bayer Becker	Jurisdiction	City of Cincinnati
Date Performed	12/12/2024	East/West Street	Site Access 1
Analysis Year	2027	North/South Street	Edwards Avenue
Time Analyzed	PM Peak	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	2027 Build Traffic Projections - Alternative 3		
Lanes			

Vehicle Volumes and Adju	ıstme	nts																	
Approach		Eastb	ound			West	oound			North	bound			South	bound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R			
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6			
Number of Lanes		0	0	0		0	1	0	0	0	2	0	0	1	1	0			
Configuration							LR				Т	TR		L	Т				
Volume (veh/h)						37		18			328	53	0	52	399				
Percent Heavy Vehicles (%)						3		3					3	3					
Proportion Time Blocked																			
Percent Grade (%)						(0												
Right Turn Channelized																			
Median Type Storage				Undi	ivided														
Critical and Follow-up He	adwa	ys																	
Base Critical Headway (sec)						7.5		6.9						4.1					
Critical Headway (sec)						6.86		6.96						4.16					
Base Follow-Up Headway (sec)						3.5		3.3						2.2					
Follow-Up Headway (sec)						3.53		3.33						2.23					
Delay, Queue Length, and	l Leve	l of Se	ervice																
Flow Rate, v (veh/h)							60							57					
Capacity, c (veh/h)							323							1134					
v/c Ratio							0.19							0.05					
95% Queue Length, Q ₉₅ (veh)							0.7							0.2					
95% Queue Length, Q ₉₅ (ft)							17.9							5.1					
Control Delay (s/veh)							18.7							8.3					
Level of Service (LOS)					C C								A						
Approach Delay (s/veh)						18	3.7						1.0						
Approach LOS						(с							A					

Copyright © 2025 University of Florida. All Rights Reserved.

HCSTM TWSC Version 2024 Edwards & Site 1 - 2027 Build AM-Alt 3.xtw

Generated: 1/27/2025 3:44:46 PM

		Controport	
General Information		Site Information	
Analyst	WLW	Intersection	Edwards Avenue and Site Access 1
Agency/Co.	Bayer Becker	Jurisdiction	City of Cincinnati
Date Performed	12/12/2024	East/West Street	Site Access 1
Analysis Year	2027	North/South Street	Edwards Avenue
Time Analyzed	PM Peak	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	2027 Build Traffic Projections - Alternative 3		
Lanes			

Vehicle Volumes and Adju	ıstme	nts																	
Approach		Eastb	ound			West	oound			North	bound			South	bound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R			
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6			
Number of Lanes		0	0	0		0	1	0	0	0	2	0	0	1	1	0			
Configuration							LR				Т	TR		L	Т				
Volume (veh/h)						37		18			328	53	0	52	399				
Percent Heavy Vehicles (%)						3		3					3	3					
Proportion Time Blocked																			
Percent Grade (%)							0												
Right Turn Channelized																			
Median Type Storage				Undi	vided														
Critical and Follow-up He	adwa	adways																	
Base Critical Headway (sec)						7.5		6.9						4.1					
Critical Headway (sec)						6.86		6.96						4.16					
Base Follow-Up Headway (sec)						3.5		3.3						2.2					
Follow-Up Headway (sec)					3.53 3.33								2.23						
Delay, Queue Length, and	l Leve	l of Se	ervice																
Flow Rate, v (veh/h)							60							57					
Capacity, c (veh/h)							323							1134					
v/c Ratio							0.19							0.05					
95% Queue Length, Q ₉₅ (veh)							0.7							0.2					
95% Queue Length, Q ₉₅ (ft)							17.9							5.1					
Control Delay (s/veh)							18.7							8.3					
Level of Service (LOS)					С								А						
Approach Delay (s/veh)		18.7												1	.0				
Approach LOS					С								A						

Copyright © 2025 University of Florida. All Rights Reserved.

HCSTM TWSC Version 2024 Edwards & Site 1 - 2027 Build PM-Alt 3.xtw Generated: 1/27/2025 3:49:45 PM

APPENDIX D

SIMTRAFFIC TRAVEL TIME & BACK OF QUEUE LANE LENGTH RESULTS
SCENARIO 1

Cross Street	Node	Delay (s/veh)	Travel time (s)	Dist (mi)	Arterial Speed	
Observatory Avenue	4	17.9	24.0	0.1	10	
Erie Avenue	1	24.7	38.2	0.1	14	
Total		42.6	62.2	0.2	12	

Cross Street	Node	Delay (s/veh)	Travel time (s)	Dist (mi)	Arterial Speed	
Erie Avenue	1	14.5	20.6	0.1	11	
Observatory Avenue	4	14.7	29.8	0.1	18	
Total		29.2	50.4	0.2	15	

Start Time	6:50
End Time	8:00
Total Time (min)	70
Time Recorded (min)	60
# of Intervals	2
# of Recorded Intervals	1
Vehs Entered	3046
Vehs Exited	3064
Starting Vehs	65
Ending Vehs	47
Travel Distance (mi)	533
Travel Time (hr)	128.2
Total Delay (hr)	107.4
Total Stops	2690
Fuel Used (gal)	49.9

Interval #0 Information Seeding

Start Time	6:50	
End Time	7:00	
Total Time (min)	10	
Volumes adjusted by	Growth Factors,80%ile Adjustmer	nt.
No data recorded this	interval.	

	¥	
Start Time	7:00	
End Time	8:00	
Total Time (min)	60	
Volumes adjusted by Gr	owth Factors,80%ile Adjustment.	
Vehs Entered	3046	
Vehs Exited	3064	
Starting Vehs	65	
Ending Vehs	47	
Travel Distance (mi)	533	
Travel Time (hr)	128.2	
Total Delay (hr)	107.4	
Total Stops	2690	
Fuel Used (gal)	49.9	

Movement	EB	EB	WB	WB	WB	NB	SB	SB	
Directions Served	LT	TR	L	Т	TR	LTR	L	TR	
Maximum Queue (ft)	225	190	64	178	198	237	100	271	
Average Queue (ft)	122	83	26	115	139	88	70	115	
95th Queue (ft)	220	176	64	168	194	161	109	210	
Link Distance (ft)	280	280		410	410	690		260	
Upstream Blk Time (%)								0	
Queuing Penalty (veh)								0	
Storage Bay Dist (ft)			40				75		
Storage Blk Time (%)			5	47			14	13	
Queuing Penalty (veh)			14	21			37	22	

Intersection: 4: Edwards Road (SR 561) & Observatory Avenue

Movement	EB	EB	WB	WB	NB	NB	SB	SB
Directions Served	L	TR	L	TR	LT	R	L	TR
Maximum Queue (ft)	71	238	273	314	120	96	125	138
Average Queue (ft)	29	107	254	277	64	43	70	44
95th Queue (ft)	60	193	333	301	110	75	118	102
Link Distance (ft)	238	238	251	251	301	301		690
Upstream Blk Time (%)		0	46	92				
Queuing Penalty (veh)		0	0	0				
Storage Bay Dist (ft)							100	
Storage Blk Time (%)							3	1
Queuing Penalty (veh)							5	3

Intersection: 5: Michigan Avenue & Erie Avenue

Movement	EB	EB	WB	WB	NB	SB
Directions Served	LT	TR	LT	TR	LTR	LTR
Maximum Queue (ft)	110	94	236	228	50	138
Average Queue (ft)	51	54	125	106	14	42
95th Queue (ft)	80	81	201	171	40	96
Link Distance (ft)	410	410	221	221	446	224
Upstream Blk Time (%)			0	0		
Queuing Penalty (veh)			0	0		
Storage Bay Dist (ft)						
Storage Blk Time (%)						
Queuing Penalty (veh)						

Network Summary

Cross Street	Node	Delay (s/veh)	Travel time (s)	Dist (mi)	Arterial Speed	
Observatory Avenue	4	17.8	23.9	0.1	10	
Erie Avenue	1	29.9	41.3	0.1	13	
Total		47.7	65.2	0.2	12	

Cross Street	Node	Delay (s/veh)	Travel time (s)	Dist (mi)	Arterial Speed	
Erie Avenue	1	27.6	45.3	0.1	6	
Observatory Avenue	4	15.2	29.8	0.1	18	
Total		42.8	75.1	0.2	12	

Start Time	3:50
End Time	5:00
Total Time (min)	70
Time Recorded (min)	60
# of Intervals	2
# of Recorded Intervals	1
Vehs Entered	3266
Vehs Exited	3248
Starting Vehs	62
Ending Vehs	80
Travel Distance (mi)	576
Travel Time (hr)	68.5
Total Delay (hr)	46.3
Total Stops	3204
Fuel Used (gal)	38.2

Interval #0 Information Seeding

Start Time	3:50					
End Time	4:00					
Total Time (min)	10					
Volumes adjusted by Growth Factors,80%ile Adjustment.						
No data recorded this	interval.					

	¥
Start Time	4:00
End Time	5:00
Total Time (min)	60
Volumes adjusted by Grow	vth Factors,80%ile Adjustment.
Vehs Entered	3266
Vehs Exited	3248
Starting Vehs	62
Ending Vehs	80
Travel Distance (mi)	576
Travel Time (hr)	68.5
Total Delay (hr)	46.3
Total Stops	3204
Fuel Used (gal)	38.2

Movement	EB	EB	WB	WB	WB	NB	SB	SB	
Directions Served	LT	TR	L	Т	TR	LTR	L	TR	
Maximum Queue (ft)	294	243	64	111	111	308	100	282	
Average Queue (ft)	191	127	32	47	58	150	92	218	
95th Queue (ft)	282	225	62	94	95	249	119	347	
Link Distance (ft)	279	279		410	410	690		266	
Upstream Blk Time (%)	1							19	
Queuing Penalty (veh)	0							0	
Storage Bay Dist (ft)			40				75		
Storage Blk Time (%)			9	14			40	26	
Queuing Penalty (veh)			10	7			154	65	

Intersection: 4: Edwards Road (SR 561) & Observatory Avenue

Movement	EB	EB	WB	WB	NB	NB	SB	SB
Directions Served	L	TR	L	TR	LT	R	L	TR
Maximum Queue (ft)	253	277	262	267	120	136	123	177
Average Queue (ft)	217	257	53	222	49	42	83	46
95th Queue (ft)	324	270	158	310	95	93	131	104
Link Distance (ft)	238	238	251	251	301	301		690
Upstream Blk Time (%)	29	82	0	13				
Queuing Penalty (veh)	0	0	0	0				
Storage Bay Dist (ft)							100	
Storage Blk Time (%)							10	0
Queuing Penalty (veh)							14	1

Intersection: 5: Michigan Avenue & Erie Avenue

Movement	EB	EB	WB	WB	NB	SB
Directions Served	LT	TR	LT	TR	LTR	LTR
Maximum Queue (ft)	133	179	153	165	52	162
Average Queue (ft)	65	74	73	56	22	41
95th Queue (ft)	108	123	128	112	52	93
Link Distance (ft)	410	410	221	221	446	224
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (ft)						
Storage Blk Time (%)						
Queuing Penalty (veh)						

Network Summary

SCENARIO 2

Cross Street	Node	Delay (s/veh)	Travel time (s)	Dist (mi)	Arterial Speed	
Observatory Avenue	4	18.8	24.8	0.1	9	
Erie Avenue	1	28.6	42.5	0.1	12	
Total		47.3	67.3	0.2	11	

Cross Street	Node	Delay (s/veh)	Travel time (s)	Dist (mi)	Arterial Speed	
Erie Avenue	1	15.7	21.9	0.1	10	
Observatory Avenue	4	14.0	29.3	0.1	18	
Total		29.7	51.2	0.2	15	

Start Time	6:50
End Time	8:00
Total Time (min)	70
Time Recorded (min)	60
# of Intervals	2
# of Recorded Intervals	1
Vehs Entered	3011
Vehs Exited	3025
Starting Vehs	55
Ending Vehs	41
Travel Distance (mi)	530
Travel Time (hr)	127.9
Total Delay (hr)	107.4
Total Stops	2618
Fuel Used (gal)	49.6

Interval #0 Information Seeding

Start Time	6:50	
End Time	7:00	
Total Time (min)	10	
Volumes adjusted by	Growth Factors,80%ile Adjustmer	nt.
No data recorded this	interval.	

	<u> </u>	
Start Time	7:00	
End Time	8:00	
Total Time (min)	60	
Volumes adjusted by Gro	wth Factors,80%ile Adjustment.	
Vehs Entered	3011	
Vehs Exited	3025	
Starting Vehs	55	
Ending Vehs	41	
Travel Distance (mi)	530	
Travel Time (hr)	127.9	
Total Delay (hr)	107.4	
Total Stops	2618	
Fuel Used (gal)	49.6	

Movement	EB	EB	WB	WB	WB	NB	SB	SB	
Directions Served	LT	TR	L	Т	TR	LTR	L	TR	
Maximum Queue (ft)	216	160	64	160	220	244	100	282	
Average Queue (ft)	111	65	29	100	122	93	73	119	
95th Queue (ft)	185	136	76	153	199	165	114	230	
Link Distance (ft)	273	273		410	410	690		266	
Upstream Blk Time (%)								1	
Queuing Penalty (veh)								0	
Storage Bay Dist (ft)			40				75		
Storage Blk Time (%)			2	42			13	14	
Queuing Penalty (veh)			6	19			34	25	

Intersection: 4: Edwards Road (SR 561) & Observatory Avenue

Movement	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	TR	L	TR	LT	R	L	TR	
Maximum Queue (ft)	115	253	273	314	138	96	138	164	
Average Queue (ft)	39	114	260	273	63	34	67	47	
95th Queue (ft)	96	183	278	292	118	76	109	101	
Link Distance (ft)	238	238	251	251	301	301	690	690	
Upstream Blk Time (%)		0	49	90					
Queuing Penalty (veh)		0	0	0					
Storage Bay Dist (ft)									
Storage Blk Time (%)									
Queuing Penalty (veh)									

Intersection: 5: Michigan Avenue & Erie Avenue

Movement	FB	FB	WB	WB	NB	SB
Directions Served	<u>IT</u>	TR		TR		I TR
Maximum Queue (ft)	72	93	236	236	50	138
Average Queue (ft)	48	46	122	115	18	39
95th Queue (ft)	77	85	195	186	45	92
Link Distance (ft)	410	410	221	221	446	224
Upstream Blk Time (%)			1	1		
Queuing Penalty (veh)			0	0		
Storage Bay Dist (ft)						
Storage Blk Time (%)						
Queuing Penalty (veh)						

Network Summary

Cross Street	Node	Delay (s/veh)	Travel time (s)	Dist (mi)	Arterial Speed	
Observatory Avenue	4	29.6	35.7	0.1	6	
Erie Avenue	1	26.9	39.2	0.1	13	
Total		56.6	74.9	0.2	10	

Cross Street	Node	Delay (s/veh)	Travel time (s)	Dist (mi)	Arterial Speed	
Erie Avenue	1	33.1	66.8	0.1	6	
Observatory Avenue	4	20.3	34.9	0.1	15	
Total		53.3	101.7	0.2	10	

Start Time	3:50
End Time	5:00
Total Time (min)	70
Time Recorded (min)	60
# of Intervals	2
# of Recorded Intervals	1
Vehs Entered	3269
Vehs Exited	3246
Starting Vehs	65
Ending Vehs	88
Travel Distance (mi)	576
Travel Time (hr)	61.3
Total Delay (hr)	39.2
Total Stops	3326
Fuel Used (gal)	36.5

Interval #0 Information Seeding

Start Time	3:50	
End Time	4:00	
Total Time (min)	10	
Volumes adjusted by	Growth Factors,80%ile Adjustmer	nt.
No data recorded this	interval.	

	¥	
Start Time	4:00	
End Time	5:00	
Total Time (min)	60	
Volumes adjusted by Gro	wth Factors,80%ile Adjustment.	
Vehs Entered	3269	
Vehs Exited	3246	
Starting Vehs	65	
Ending Vehs	88	
Travel Distance (mi)	576	
Travel Time (hr)	61.3	
Total Delay (hr)	39.2	
Total Stops	3326	
Fuel Used (gal)	36.5	

Movement	EB	EB	WB	WB	WB	NB	SB	SB	
Directions Served	LT	TR	L	Т	TR	LTR	L	TR	
Maximum Queue (ft)	288	210	64	155	238	392	100	330	
Average Queue (ft)	179	108	42	63	86	149	96	245	
95th Queue (ft)	259	188	67	121	177	293	118	340	
Link Distance (ft)	273	273		410	410	690		266	
Upstream Blk Time (%)	1							33	
Queuing Penalty (veh)	0							0	
Storage Bay Dist (ft)			40				75		
Storage Blk Time (%)			9	17			44	29	
Queuing Penalty (veh)			10	9			171	72	

Intersection: 4: Edwards Road (SR 561) & Observatory Avenue

Movement	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	TR	L	TR	LT	R	L	TR	
Maximum Queue (ft)	253	277	191	276	160	110	250	136	
Average Queue (ft)	42	235	25	172	67	42	130	60	
95th Queue (ft)	141	304	83	268	129	93	218	118	
Link Distance (ft)	238	238	251	251	301	301	690	690	
Upstream Blk Time (%)	2	21		2					
Queuing Penalty (veh)	0	0		0					
Storage Bay Dist (ft)									
Storage Blk Time (%)									
Queuing Penalty (veh)									

Intersection: 5: Michigan Avenue & Erie Avenue

Movement	ED	ED	\//D	\//D	ND	CD
wovernent	ED	ED	VVD	VVD	IND	SD
Directions Served	LT	TR	LT	TR	LTR	LTR
Maximum Queue (ft)	230	205	138	122	72	114
Average Queue (ft)	104	110	63	50	19	53
95th Queue (ft)	189	186	118	108	53	97
Link Distance (ft)	410	410	221	221	446	224
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (ft)						
Storage Blk Time (%)						
Queuing Penalty (veh)						

Network Summary

SCENARIO 3

Cross Street	Node	Delay (s/veh)	Travel time (s)	Dist (mi)	Arterial Speed
Observatory Avenue	4	38.7	44.9	0.1	5
Site Access 1	12	3.1	10.8	0.1	28
Erie Avenue	1	16.4	22.6	0.1	10
Total		58.1	78.3	0.2	10

Cross Street	Node	Delay (s/veh)	Travel time (s)	Dist (mi)	Arterial Speed	
Erie Avenue	1	16.9	23.2	0.1	10	
Site Access 1	12	2.4	9.3	0.1	24	
Observatory Avenue	4	20.3	28.5	0.1	10	
Total		39.6	61.0	0.2	12	

Start Time	6:50
End Time	8:00
Total Time (min)	70
Time Recorded (min)	60
# of Intervals	2
# of Recorded Intervals	1
Vehs Entered	3380
Vehs Exited	3413
Starting Vehs	75
Ending Vehs	42
Travel Distance (mi)	581
Travel Time (hr)	57.4
Total Delay (hr)	34.6
Total Stops	3160
Fuel Used (gal)	35.9

Interval #0 Information Seeding

Start Time	6:50	
End Time	7:00	
Total Time (min)	10	
Volumes adjusted by	Growth Factors,80%ile Adjustmer	nt.
No data recorded this	interval.	

Start Time	7:00
End Time	8:00
Total Time (min)	60
Volumes adjusted by Gro	owth Factors,80%ile Adjustment.
Vehs Entered	3380
Vehs Exited	3413
Starting Vehs	75
Ending Vehs	42
Travel Distance (mi)	581
Travel Time (hr)	57.4
Total Delay (hr)	34.6
Total Stops	3160
Fuel Used (gal)	35.9

Movement	EB	EB	WB	WB	WB	NB	SB	SB	
Directions Served	LT	TR	L	Т	TR	LTR	L	TR	
Maximum Queue (ft)	246	192	64	178	217	206	100	280	
Average Queue (ft)	134	78	23	114	138	102	71	130	
95th Queue (ft)	229	169	62	168	200	173	115	238	
Link Distance (ft)	279	279		410	410	263		266	
Upstream Blk Time (%)								0	
Queuing Penalty (veh)								0	
Storage Bay Dist (ft)			40				75		
Storage Blk Time (%)			4	44			13	17	
Queuing Penalty (veh)			9	20			36	30	

Intersection: 4: Edwards Road (SR 561) & Observatory Avenue

Movement EB EB	WB	WB	NB	NB	SB	SB
Directions Served L TR	L	TR	LT	R	L	TR
Maximum Queue (ft) 137 245	266	314	300	118	124	196
Average Queue (ft) 34 119	137	269	97	32	77	77
95th Queue (ft) 95 213	332	310	182	76	126	150
Link Distance (ft) 238 238	251	251	301	301		372
Upstream Blk Time (%) 0	7	47	0			
Queuing Penalty (veh) 0	0	0	0			
Storage Bay Dist (ft)					100	
Storage Blk Time (%)					6	2
Queuing Penalty (veh)					10	3

Intersection: 5: Michigan Avenue & Erie Avenue

Movement	EB	EB	WB	WB	NB	SB
Directions Served	LT	TR	LT	TR	LTR	LTR
Maximum Queue (ft)	94	91	236	211	71	112
Average Queue (ft)	47	53	134	123	24	39
95th Queue (ft)	84	89	203	196	57	74
Link Distance (ft)	410	410	221	221	446	224
Upstream Blk Time (%)			1	0		
Queuing Penalty (veh)			0	0		
Storage Bay Dist (ft)						
Storage Blk Time (%)						
Queuing Penalty (veh)						

Intersection: 12: Edwards Road (SR 561) & Site Access 1

Movement	WB	SB
Directions Served	LR	LT
Maximum Queue (ft)	78	31
Average Queue (ft)	35	7
95th Queue (ft)	59	29
Link Distance (ft)	180	263
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Network Summary

Cross Street	Node	Delay (s/veh)	Travel time (s)	Dist (mi)	Arterial Speed	
Observatory Avenue	4	21.5	27.6	0.1	8	
Site Access 1	12	2.3	9.2	0.1	33	
Erie Avenue	1	21.0	27.2	0.1	8	
Total		44.7	64.0	0.2	12	

Cross Street	Node	Delay (s/veh)	Travel time (s)	Dist (mi)	Arterial Speed	
Erie Avenue	1	30.5	53.0	0.1	6	
Site Access 1	12	3.9	10.7	0.1	21	
Observatory Avenue	4	14.8	23.0	0.1	13	
Total		49.2	86.7	0.2	11	

-	
Start Time	3:50
End Time	5:00
Total Time (min)	70
Time Recorded (min)	60
# of Intervals	2
# of Recorded Intervals	1
Vehs Entered	3483
Vehs Exited	3488
Starting Vehs	73
Ending Vehs	68
Travel Distance (mi)	614
Travel Time (hr)	118.8
Total Delay (hr)	95.0
Total Stops	3546
Fuel Used (gal)	51.4

Interval #0 Information Seeding

Start Time	3:50	
End Time	4:00	
Total Time (min)	10	
Volumes adjusted by	Growth Factors,80%ile Adjustmen	t.
No data recorded this	interval.	

Start Time	4:00
End Time	5:00
Total Time (min)	60
Volumes adjusted by Gro	wth Factors,80%ile Adjustment.
Vehs Entered	3483
Vehs Exited	3488
Starting Vehs	73
Ending Vehs	68
Travel Distance (mi)	614
Travel Time (hr)	118.8
Total Delay (hr)	95.0
Total Stops	3546
Fuel Used (gal)	51.4

Movement	EB	EB	WB	WB	WB	NB	SB	SB	
Directions Served	LT	TR	L	Т	TR	LTR	L	TR	
Maximum Queue (ft)	258	235	64	97	179	273	100	330	
Average Queue (ft)	183	118	35	47	60	134	92	252	
95th Queue (ft)	244	200	68	79	117	218	117	344	
Link Distance (ft)	279	279		410	410	264		266	
Upstream Blk Time (%)						0		32	
Queuing Penalty (veh)						1		0	
Storage Bay Dist (ft)			40				75		
Storage Blk Time (%)			13	13			39	31	
Queuing Penalty (veh)			15	6			162	78	

Intersection: 4: Edwards Road (SR 561) & Observatory Avenue

Movement	EB	EB	WB	WB	NB	NB	SB	SB
Directions Served	L	TR	L	TR	LT	R	L	TR
Maximum Queue (ft)	292	290	266	288	98	95	124	321
Average Queue (ft)	241	258	75	214	55	39	108	119
95th Queue (ft)	313	273	213	314	94	76	144	236
Link Distance (ft)	238	238	251	251	301	301		371
Upstream Blk Time (%)	49	88	1	14				
Queuing Penalty (veh)	0	0	0	0				
Storage Bay Dist (ft)							100	
Storage Blk Time (%)							21	2
Queuing Penalty (veh)							31	5

Intersection: 5: Michigan Avenue & Erie Avenue

Movement	EB	EB	WB	WB	NB	SB
Directions Served	LT	TR	LT	TR	LTR	LTR
Maximum Queue (ft)	141	137	122	164	74	74
Average Queue (ft)	74	84	65	53	30	41
95th Queue (ft)	128	134	119	105	67	76
Link Distance (ft)	410	410	221	221	446	224
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (ft)						
Storage Blk Time (%)						
Queuing Penalty (veh)						

Intersection: 12: Edwards Road (SR 561) & Site Access 1

Movement	WB	NB	SB
Directions Served	LR	TR	LT
Maximum Queue (ft)	73	53	174
Average Queue (ft)	34	2	31
95th Queue (ft)	61	19	101
Link Distance (ft)	274	371	264
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Network Summary

SCENARIO 4

Cross Street	Node	Delay (s/veh)	Travel time (s)	Dist (mi)	Arterial Speed
Observatory Avenue	4	26.5	32.7	0.1	7
Site Access 1	12	2.8	10.8	0.1	28
Erie Avenue	1	21.5	27.7	0.1	8
Total		50.8	71.3	0.2	11

Cross Street	Node	Delay (s/veh)	Travel time (s)	Dist (mi)	Arterial Speed	
Erie Avenue	1	27.3	35.8	0.1	7	
Site Access 1	12	2.3	9.1	0.1	25	
Observatory Avenue	4	17.9	25.8	0.1	12	
Total		47.5	70.8	0.2	11	

-	
Start Time	6:50
End Time	8:00
Total Time (min)	70
Time Recorded (min)	60
# of Intervals	2
# of Recorded Intervals	1
Vehs Entered	3320
Vehs Exited	3324
Starting Vehs	79
Ending Vehs	75
Travel Distance (mi)	569
Travel Time (hr)	113.8
Total Delay (hr)	91.5
Total Stops	3235
Fuel Used (gal)	48.5

Interval #0 Information Seeding

Start Time	6:50
End Time	7:00
Total Time (min)	10
Volumes adjusted by	Growth Factors,80%ile Adjustme
No data recorded this	interval.

	V	
Start Time	7:00	
End Time	8:00	
Total Time (min)	60	
Volumes adjusted by Grow	th Factors,80%ile Adjustment.	
Vehs Entered	3320	
Vehs Exited	3324	
Starting Vehs	79	
Ending Vehs	75	
Travel Distance (mi)	569	
Travel Time (hr)	113.8	
Total Delay (hr)	91.5	
Total Stops	3235	
Fuel Used (gal)	48.5	

Movement	EB	EB	WB	WB	WB	NB	NB	SB	SB
Directions Served	LT	TR	L	Т	TR	L	TR	L	TR
Maximum Queue (ft)	244	185	64	198	245	74	200	100	301
Average Queue (ft)	121	76	34	127	146	16	100	79	173
95th Queue (ft)	236	177	72	187	224	46	169	124	303
Link Distance (ft)	273	273		409	409		262		266
Upstream Blk Time (%)									8
Queuing Penalty (veh)									0
Storage Bay Dist (ft)			40			50		75	
Storage Blk Time (%)			4	43		1	35	16	28
Queuing Penalty (veh)			11	20		2	9	45	48

Intersection: 4: Edwards Road (SR 561) & Observatory Avenue

Movement	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	TR	L	TR	LT	R	L	TR	
Maximum Queue (ft)	253	290	279	303	140	53	183	203	
Average Queue (ft)	196	171	246	274	75	23	100	78	
95th Queue (ft)	264	295	334	292	130	49	152	135	
Link Distance (ft)	238	238	251	251	301	301	370	370	
Upstream Blk Time (%)	21	17	47	87					
Queuing Penalty (veh)	0	0	0	0					
Storage Bay Dist (ft)									
Storage Blk Time (%)									
Queuing Penalty (veh)									

Intersection: 5: Michigan Avenue & Erie Avenue

			14/5	14/5		0.5
Movement	EB	EB	WB	WB	NB	SB
Directions Served	LT	TR	LT	TR	LTR	LTR
Maximum Queue (ft)	132	175	236	236	74	94
Average Queue (ft)	55	55	140	144	31	34
95th Queue (ft)	96	104	209	230	60	68
Link Distance (ft)	409	409	221	221	446	224
Upstream Blk Time (%)			0	1		
Queuing Penalty (veh)			0	0		
Storage Bay Dist (ft)						
Storage Blk Time (%)						
Queuing Penalty (veh)						

Intersection: 12: Edwards Road (SR 561) & Site Access 1

Movement	WB	SB
Directions Served	LR	L
Maximum Queue (ft)	78	31
Average Queue (ft)	34	4
95th Queue (ft)	65	21
Link Distance (ft)	143	
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		100
Storage Blk Time (%)		
Queuing Penalty (veh)		

Network Summary

Cross Street	Node	Delay (s/veh)	Travel time (s)	Dist (mi)	Arterial Speed	
Observatory Avenue	4	31.1	37.4	0.1	6	
Site Access 1	12	2.6	9.7	0.1	31	
Erie Avenue	1	23.4	29.4	0.1	8	
Total		57.1	76.5	0.2	10	

Cross Street	Node	Delay (s/veh)	Travel time (s)	Dist (mi)	Arterial Speed	
Erie Avenue	1	22.9	30.9	0.1	8	
Site Access 1	12	2.0	8.8	0.1	25	
Observatory Avenue	4	15.9	23.9	0.1	12	
Total		40.8	63.7	0.2	12	

Start Time	3:50
End Time	5:00
Total Time (min)	70
Time Recorded (min)	60
# of Intervals	2
# of Recorded Intervals	1
Vehs Entered	3608
Vehs Exited	3623
Starting Vehs	79
Ending Vehs	64
Travel Distance (mi)	629
Travel Time (hr)	61.2
Total Delay (hr)	36.7
Total Stops	3834
Fuel Used (gal)	38.8

Interval #0 Information Seeding

Start Time	3:50	
End Time	4:00	
Total Time (min)	10	
Volumes adjusted by	Growth Factors,80%ile Adjustmen	ıt.
No data recorded this	interval.	

Start Time	4:00	
End Time	5:00	
Total Time (min)	60	
Volumes adjusted by Grow	th Factors,80%ile Adjustment.	
Vehs Entered	3608	
Vehs Exited	3623	
Starting Vehs	79	
Ending Vehs	64	
Travel Distance (mi)	629	
Travel Time (hr)	61.2	
Total Delay (hr)	36.7	
Total Stops	3834	
Fuel Used (gal)	38.8	

Movement	EB	EB	WB	WB	WB	NB	NB	SB	SB
Directions Served	LT	TR	L	Т	TR	L	TR	L	TR
Maximum Queue (ft)	288	286	64	135	176	74	248	100	282
Average Queue (ft)	208	146	49	75	90	18	136	88	222
95th Queue (ft)	284	244	77	125	152	46	213	122	335
Link Distance (ft)	273	273		409	409		264		266
Upstream Blk Time (%)	2	0					0		11
Queuing Penalty (veh)	0	0					0		0
Storage Bay Dist (ft)			40			50		75	
Storage Blk Time (%)			27	20			40	23	28
Queuing Penalty (veh)			30	10			12	94	70

Intersection: 4: Edwards Road (SR 561) & Observatory Avenue

Movement	EB	EB	WB	WB	NB	NB	SB	SB
Directions Served	L	TR	L	TR	LT	R	L	TR
Maximum Queue (ft)	162	272	112	267	134	113	226	162
Average Queue (ft)	54	222	39	176	62	48	140	61
95th Queue (ft)	124	295	87	267	119	92	216	121
Link Distance (ft)	238	238	251	251	301	301	370	370
Upstream Blk Time (%)		13		5				
Queuing Penalty (veh)		0		0				
Storage Bay Dist (ft)								
Storage Blk Time (%)								
Queuing Penalty (veh)								

Intersection: 5: Michigan Avenue & Erie Avenue

Movement	EB	EB	WB	WB	NB	SB
Directions Served	LT	TR	LT	TR	LTR	LTR
Maximum Queue (ft)	240	269	163	118	118	98
Average Queue (ft)	127	133	70	63	33	50
95th Queue (ft)	228	231	118	103	73	91
Link Distance (ft)	409	409	221	221	446	224
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (ft)						
Storage Blk Time (%)						
Queuing Penalty (veh)						

Intersection: 12: Edwards Road (SR 561) & Site Access 1

Movement	WB	SB
Directions Served	LR	L
Maximum Queue (ft)	119	73
Average Queue (ft)	36	23
95th Queue (ft)	78	58
Link Distance (ft)	240	
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		100
Storage Blk Time (%)		
Queuing Penalty (veh)		

Network Summary